

 [image: Cover.png]

 NOTICE

 This accessible media has been made available to people with bona fide disabilities that affect reading. This
 notice tells you about restrictions on the use of this accessible media, which could be a book, a periodical, or other content.

 Copyright Notice

 Title:
 Simplifying 3D Printing with OpenSCAD

 Author:
 Colin Dow

 Copyright
 2022 by Packt Publishing

 This notice is not part of the copyrighted work, which begins below after the phrase "Begin Content".

 Bookshare distributes this accessible media under restrictions set forth either in copyright law or in an
 agreement with the copyright owner. If you are not a person with a print disability, or an agency serving
 people with print disabilities, you should not use this accessible media and should destroy this content. You
 are not allowed to redistribute content derived from this accessible media to anybody else, with one exception:
 we allow hardcopy Braille books prepared from Accessible Media to be provided to other blind people.

 Access to accessible media through Bookshare is a valuable right and privilege. Protect this access for the
 print disabled community by complying with these restrictions!

 You, your parents, or your school (or agency) signed a Bookshare agreement. For the full text of the current
 version of the Member Agreements, please visit www.bookshare.org/Agreements. This information in this accessible
 media file does not in any way change the terms of your Agreement with Bookshare.

 Limitation of Liability; Indemnity by User

 Most authors and publishers do not have control over the content available through Bookshare. By downloading and
 using this material, you agree that neither Bookshare nor the authors or original publishers of the materials
 shall be financially responsible for any loss or damage to you or any third parties caused by the failure or
 malfunction of the Bookshare Web Site (www.bookshare.org) or because of any inaccuracy or lack of completeness
 of any content that you download from the Web Site.

 BOOKSHARE, AND THE AUTHORS, PUBLISHERS AND COPYRIGHT OWNERS OF THE MATERIALS, SHALL NOT IN ANY CASE BE LIABLE FOR
 DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
 LEGAL THEORY, IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING OF CONTENT, THE FUNCTIONING OF THE WEB SITE,
 OR ANY OTHER ASPECT OF YOUR USE OF THE WEB SITE AND THE CONTENTS PROVIDED HEREUNDER.

 You agree to indemnify and hold Bookshare and Benetech, the Web Site provider, harmless from any liability,
 loss, cost, damage or expense, including reasonable attorney's fees, that result from any claim made by any
 author, publisher or copyright owner that you, or any one acquiring copies of copyrighted materials downloaded
 from the Web Site through you, is not print disabled or otherwise entitled to download and use the digital
 materials from the Bookshare Web Site. This indemnity includes any claims arising out of any breach of your
 obligations under your Member Agreement, whether by reason of misuse, negligence or otherwise.

 Permitted Use; Limited Waiver of Privacy Principles and Laws

 You are permitted under this restricted license to use this digital copy for your own personal use. However,
 any further reproduction, distribution, or any commercial usage requires the express, prior consent of the
 copyright holder.

 This material contains digital watermarks and fingerprints designed to identify this material as a Bookshare
 digital material that was specifically downloaded by you. It is generally illegal to delete or modify these
 watermarks and fingerprints, as well as being in violation of the terms of your Member Agreement. Your
 Member Agreement expressly authorizes us to include these security devices, solely for this use, as an express
 exception to current and future privacy laws relating to protection of personal information data. Should any
 future privacy law or regulation preclude the use of this personal data for purposes of tracking the downloading
 and use of these materials and enforcing the limitations of relevant copyright law or the Member Agreement,
 your right to use these materials will terminate on the effective date of any such law or regulation.

 This material was downloaded by KALINKA BROWN and is digitally fingerprinted in the manner described above.

 Book Quality

 Bookshare is interested in improving book quality over time, if you can help us by providing any book quality
 feedback, we'll work hard to make those changes and republish the books.

 	
 Report book quality issue

 	
 See all reported book quality issues

 Begin Content

 Simplifying 3D Printing with OpenSCAD

 Design, build, and test OpenSCAD programs to bring your ideas to life using 3D printers

 Colin Dow

 [image:]

 BIRMINGHAM—MUMBAI

 Simplifying 3D Printing with OpenSCAD

 Copyright © 2022 Packt Publishing

 All rights reserved
 . No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Group Product Manager
 : Rohit Rajkumar

 Publishing Product Manager
 : Aaron Tanna

 Senior Editor
 : Hayden Edwards

 Content Development Editor
 : Rashi Dubey

 Technical Editor
 : Shubham Sharma

 Copy Editor
 : Safis Editing

 Project Coordinator
 : Rashika Ba

 Proofreader
 : Safis Editing

 Indexer
 : Sejal Dsilva

 Production Designer
 : Shyam Sundar Korumilli

 Marketing Coordinator
 : Elizabeth Varghese

 First published: March 2022

 Production reference: 1240222

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham

 B3 2PB, UK.

 ISBN 978-1-80181-317-4

 www.packt.com

 This book is dedicated to my wife, Constance, and our sons, Maximillian and Jackson. This book would not be possible without their continuous love and support.

 – Colin Dow

 Contributors

 About the author

 Colin Dow
 has been 3D printing since 2013, starting with the laser-cut wooden frame version of the Ultimaker 3D printer. He has gone through a dozen or so 3D printers over the years, from MakerBots, PrintrBots, early Prusa i3s, Delta printers, and liquid resin printers. Colin has been working with OpenSCAD since 2014, using it with 3D printers to design and manufacture model rocketry parts for his model rocketry business. Through his aerospace workshops, he has introduced many students to 3D printing, including in-class demonstrations of 3D printing. Over the last few years, Colin has been designing and building automated drones for his drone start-up using 3D printers and OpenSCAD.

 I would like to thank all the engineers, technicians, and innovators that have come before me. To paraphrase the great Sir Isaac Newton, "If I have seen further it is by standing on the shoulders of technology giants."

 About the reviewers

 Basil Dimakarakos
 is a self-employed IT professional acting as a support specialist with over a decade of experience in IT analysis of system needs, infrastructure design, and layout, with a Diploma of Computer and Network Engineering Technology.

 His work as an IT professional has involved many roles: instructor for Office applications, analyzing business needs, configuring integration with peripherals, the design and layout of office networking systems, installing and configuring telecommunication tools, managing website/database access.

 Basil has worked for IBM as a help-desk representative, TD bank as an internal user support assistant, Reed Exhibitions as an IT manager and support liaison, as an IT technician for SME Canada, and as a self-employed IT technician for several small to medium-size businesses over the years.

 After work, he engages in a variety of activities including music recording, reading both fiction and non-fiction books, fixing old audio electronic gear, cycling, and cooking.

 Most of all, he spends time exploring different technical and science-related media for new discoveries, inventions, gadgets, and ideas encompassing everything from artificial intelligence to zoology in the public media.

 Constance Dow
 has been involved in technology for over 20 years. She started out in the software industry specializing in quality assurance and database configuration. She holds a BA from the University of Toronto as well as a computer science diploma from Sheridan College. Currently, she works for a large pharmaceutical company ensuring compliance with local regulations.

 Gabriel Frampton
 is a modular origami designer and geometric artist with a parallel career as a basic science research assistant at the University of Texas at Austin Dell Medical School. He had previously been writing 3D geometry calculations by hand to develop new modular origami designs and discovered that the same principles could be applied to 3D printing by writing code using OpenSCAD. His work in 3D printing and geometric origami can be found by searching for
 @foldedcrystals
 .

 Mats Tage Axelsson
 is a long-term Linux fanatic who has been designing his own CAD models since the last century. He has also worked for big telecoms companies, making your mobile phone systems bigger and better.

 His most common activity nowadays is writing for Linux magazines on topics such as how to use and optimize your computer for your favorite applications.

 Table of Contents

 Preface

 Part 1: Exploring 3D Printing

 Chapter 1
 : Getting Started with 3D Printing

 Technical requirements

 Understanding the Creality Ender 3

 Ender 3 models

 Understanding the parts of the Ender 3

 Upgrading the Ender 3

 Leveling the print bed

 Leveling the corners of the bed

 Mesh bed leveling

 Materials available for 3D printing

 Poly-Lactic Acid (PLA)

 Acrylonitrile Butadiene Styrene (ABS)

 Glycolyzed Polyester (PETG)

 High-Impact Polystyrene (HIPS)

 Polyvinyl Alcohol (PVA)

 Carbon fiber

 Nylon

 Flexible materials

 Other materials

 Summary

 Chapter 2
 : What Are Slicer Programs?

 Technical requirements

 Controlling a 3D printer using G-code

 What is G-code?

 Understanding G-code

 Using Pronterface to control our 3D printer

 Leveling the corners with G-code

 Common FDM slicer programs

 Slicing an object into G-code

 Slicing software applications

 Which FDM slicer should I choose?

 Slicer programs for liquid resin 3D printers

 What is liquid resin printing?

 Chitubox

 The Anycubic Photon Workshop

 Summary

 Chapter 3
 : Printing Our First Object

 Technical requirements

 Finding objects to print

 Understanding 3D object file formats

 Downloading 3D objects

 Calibration objects for our 3D printer

 Preparing our 3D printer

 Slicing our object

 Setting up the profile

 Loading our model

 Quality settings

 Infill settings

 Temperature settings

 Cooling settings

 Build Plate Adhesion settings

 Slicing our object

 Printing our object

 Applying a glue stick to the bed

 Running our print job

 Calibrating our printer

 Inspecting #3DBenchy for print quality

 Summary

 Part 2: Learning OpenSCAD

 Chapter 4
 : Getting Started with OpenSCAD

 Technical requirements

 Introducing OpenSCAD

 Exploring other CAD programs

 Fusion 360

 TinkerCAD

 FreeCAD

 Comparing OpenSCAD with other CAD programs

 Learning OpenSCAD GUI and basic commands

 Downloading and Installing OpenSCAD

 Getting to know the OpenSCAD environment

 OpenSCAD basic 2D shapes

 OpenSCAD basic 3D shapes

 Learning OpenSCAD Boolean and transformation operations

 OpenSCAD Boolean operations

 OpenSCAD transformation operations

 Creating our PVC pipe hook

 Summary

 Chapter 5
 : Using Advanced Operations of OpenSCAD

 Technical requirements

 Turning 2D shapes into 3D objects

 Importing SVG files into OpenSCAD

 Creating a 3D Thumbs Up symbol

 Extruding the base

 Putting the base and Thumbs Up object together

 3D printing our Thumbs Up award

 Looking at advanced OpenSCAD commands

 Exploring the available fonts

 Exploring the text operation

 Creating a dynamic backing plate

 Simplifying our code with modules

 Creating a module for our Thumbs Up object

 Creating a module for the base

 Creating a module for the plaque

 Creating a design using modules

 Summary

 Chapter 6
 : Exploring Common OpenSCAD Libraries

 Technical requirements

 Exploring the OpenSCAD General libraries

 BOSL

 dotSCAD

 NopSCADlib

 BOLTS

 Using the BOSL to design a desk drawer

 Downloading and installing the BOSL

 Creating the drawer tray

 Adding rails to our drawer tray

 Creating the handle for our drawer

 Creating the sliders for our desk drawer

 Adding screw holes to the sliders

 Exploring OpenSCAD Single Topic libraries

 Round Anything

 Mark's Enclosure Helper

 The OpenSCAD threads.scad module

 The OpenSCAD smooth primitives library

 Creating our own OpenSCAD library

 Summary

 Part 3: Projects

 Chapter 7
 : Creating a 3D-Printed Name Badge

 Technical requirements

 Creating text for our 3D-printed name badge

 Understanding the OpenSCAD text operation

 Making text curve in OpenSCAD

 Creating a name tag text generator module

 Adding a base plate to our 3D-printed name badge

 Creating our first shape

 Adding an indent for the brooch pin

 Putting the first shape and indent together

 Printing out our 3D-printed name badge

 Preparing our design for a print job

 Printing and finishing

 Summary

 Chapter 8
 : Designing and Printing a Laptop Stand

 Technical requirements

 Designing the frame in Inkscape and OpenSCAD

 Downloading and installing Inkscape

 Exploring Inkscape

 Using Inkscape to design the frame

 Using OpenSCAD to complete the design

 Designing the threaded rod in OpenSCAD

 Creating a rod with an M10 threaded top

 Adding a connector plate

 Printing out our laptop stand

 Slicing and printing the frame

 Slicing and printing the rods

 Putting the laptop stand together

 Summary

 Chapter 9
 : Designing and Printing a Model Rocket

 Technical requirements

 Creating the motor mount

 Building around the paper tube

 Designing and printing the motor mount

 Getting an accurate outside diameter measurement

 Creating the nose cone

 Designing the nose cone

 Printing out the nose cone

 Creating the fins

 Designing the fin can

 Printing out the fin can

 Assembling and launching the model rocket

 Installing the shock cord

 Installing the fin can

 Finishing the construction of our model rocket

 Summary

 Part 4: The Future

 Chapter 10
 : The Future of 3D Printing and Design

 Technical requirements

 3D printed homes

 What are 3D printed homes?

 Advantages of 3D printed homes

 3D printed homes for space exploration

 Creating a 3D printed birdhouse

 The future of mass customization

 The fourth industrial revolution and 3D printing

 Customizing products

 Summary

 Other Books You May Enjoy

 Preface

 OpenSCAD is an open-source 3D design platform that helps you bring your designs to life. This book will show you how to make the best use of OpenSCAD to design and build objects using 3D printers.

 This OpenSCAD book starts by taking you through the 3D printing technology, the software used for designing your objects, and an analysis of the G-code produced by the 3D printer slicer software. Complete with step-by-step explanations of essential concepts and real-world examples such as designing and printing a 3D name badge, model rocket, and laptop stand, the book helps you learn about 3D printers and how to set up a printing job. You'll design your objects using the OpenSCAD program that provides a robust and free 3D compiler at your fingertips. As you set up a 3D printer for a print job, you'll gain a solid understanding of how to configure the parameters to build well-defined designs.

 By the end of this 3D printing book, you'll be ready to start designing and printing your own 3D printed products using OpenSCAD.

 Who this book is for

 This book is for engineers, hobbyists, teachers, 3D printing enthusiasts, and individuals working
 in the field of 3D printing. Basic knowledge of setting up and running 3D printers is assumed.

 What this book covers

 Chapter 1

 ,
 Getting Started with 3D Printing
 , starts our exploration of 3D printers by looking at the Creality Ender 3 V2. We investigate the various parts that make up a 3D printer. We end the chapter with a look at the various materials that we can 3D print with.

 Chapter 2

 ,
 What Are Slicer Programs?
 , investigates G-code and slicer programs. We will control a 3D printer through the use of G-code before learning about slicing programs that turn 3D shapes into G-code for our 3D printer.

 Chapter 3

 ,
 Printing Our First Object
 , uses a 3D printer to print out objects. Knowledge gained from this chapter will be useful throughout the rest of the book as we bring our 3D ideas to life.

 Chapter 4

 ,
 Getting Started with OpenSCAD
 , explains how to create 3D shapes using OpenSCAD. We will compare OpenSCAD to other 3D design programs before we design a hook for a PVC pipe.

 Chapter 5

 ,
 Using Advanced Operations of OpenSCAD
 , continues to explore OpenSCAD as we learn ways to convert 2D shapes into 3D objects. We will take what we've learned and use it to design a Thumbs Up award trophy.

 Chapter 6

 ,
 Exploring Common OpenSCAD Libraries
 , looks into common libraries that we may use with OpenSCAD. We will use the knowledge gained to create a desk drawer that we can install under a table or desk.

 Chapter 7

 ,
 Creating a 3D Printed Name Badge
 , shows how to bend text around a circle. We will use this knowledge to create a name badge for a shop or conference. This is the first chapter in which we 3D print a design of our own.

 Chapter 8

 ,
 Designing and Printing a Laptop Stand
 , looks at designing a shape in Inkscape and importing it into OpenSCAD where we will turn it into a 3D shape. The project for this chapter is a laptop riser stand. We will design all the parts needed for the laptop riser stand, 3D-print them, and then assemble the stand using standard construction techniques.

 Chapter 9

 ,
 Building a 3D Printed Model Rocket Using a Common Paper Tube
 , takes a discarded paper towel tube and turns it into a model rocket. We will design and print out the motor mount, nose cone, and fins. Our model rocket will work with standard model rocket motors. This design is the first where we take measurements of other objects (the paper towel tube) and design parts around them.

 Chapter 10

 ,
 The Future of 3D Printers and Design
 , explores what the future may hold for 3D printers in the field of 3D printed homes and mass customization. For the final project of the book, we will design and print out a birdhouse.

 To get the most out of this book

 To get the most from this book, a background in the use of various software programs is desirable. In this book, we will be switching between various programs, such as OpenSCAD, Cura, and Inkscape, as we bring our 3D designs to life.

 [image:]

 If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

 Although a programming background is not necessary, having a bit of programming experience will be very helpful.

 Download the example code files

 You can download the example code files for this book from GitHub at
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD
 . If there's an update to the code, it will be updated in the GitHub repository.

 We also have other code bundles from our rich catalog of books and videos available at
 https://github.com/PacktPublishing/
 . Check them out!

 Conventions used

 There are a number of text conventions used throughout this book.

 Code in text
 : Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "For our initial shape, we will subtract a circle from a square using the
 difference
 operation."

 A block of code is set as follows:

 difference()

 {

 translate([100,0])square(200, true);

 translate([200,0])circle(80);

 }

 Any command-line input or output is written as follows:

 module_name(parameters)

 {

 body_of_module

 }

 Bold
 : Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in
 bold
 . Here is an example: "To do so, open OpenSCAD and click on the
 New
 button."

 Tips or Important Notes

 Appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback
 : If you have questions about any aspect of this book, email us at
 customercare@packtpub.com
 and mention the book title in the subject of your message.

 Errata
 : Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit
 www.packtpub.com/support/errata
 and fill in the form.

 Piracy
 : If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at
 copyright@packt.com
 with a link to the material.

 If you are interested in becoming an author
 : If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit
 authors.packtpub.com
 .

 Part 1: Exploring 3D Printing

 We will start our journey into 3D printing and design by focusing on 3D printers. We will learn a bit about the history of the 3D printer and then move on to how they work. We will investigate some of the software used in 3D printing before we print out our first model.

 In this part, we cover the following chapters:

 	

 Chapter 1

 ,
 Getting Started with 3D Printing

 	

 Chapter 2

 ,
 What Are Slicer Programs?

 	

 Chapter 3

 ,
 Printing Our First Object

 Chapter 1

 : Getting Started with 3D Printing

 One of the best-value 3D printers on the market today is the
 Creality Ender 3 V2 3D printer
 , offering a decently sized print bed with a sturdy aluminum frame. So popular is the Ender 3 V2 and other Ender 3 series printers that you can also find many upgrades and modifications to add; many of these may be 3D printed using the printer itself.

 The history of 3D printers can be traced back to the 1980s. Early printers involved the use of lasers making patterns in liquids and powders. In 2005, the open source RepRap project was started and the era of 3D printers with spools of hard plastic filament was realized. Today, 3D printing is available for the general public, and is relatively affordable with machines such as the Ender 3 V2.

 We are going to start our journey by having an overview of this printer before we level the bed – by far the most important step to get a good 3D print.

 We will finish the chapter off with a discussion of the types of materials that we may print with the Ender 3 V2.

 In this chapter, we will cover the following topics:

 	Understanding the Creality Ender 3

 	Leveling the print bed

 	Materials available for 3D printing

 Technical requirements

 In this chapter, we get acquainted with 3D printers. To complete the hands-on portions, we will require the following:

 	A recent 3D printer model, preferably the Creality Ender 3 V2.

 	A Windows, macOS, or Linux machine.

 	A microSD card and related card adapter for a computer.

 	
 The images for this chapter may be found here:
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter1
 .

 Understanding the Creality Ender 3

 Founded in 2014, Creality is a Chinese-based 3D printer manufacturer. Their products include

 the CR-10, CR-6, and Ender series
 Fused Deposition Modeling
 (
 FDM
) printers. The

 Ender 3 series of 3D printers is arguably among the most iconic 3D printers not only for Creality but for the maker community at large. Some may view the Ender 3 series as entry level, but they are much more than that. The dependability, ease of use, and upgrade options available for the Ender 3 series printers make them a favorite with everyone from beginners to those with years of experience with 3D printing.

 What Is Fused Deposit Modeling?

 FDM is a technique of 3D printing where plastic filament stored on a roll is melted and deposited

 in place by a moving head. FDM may be referred to as
 Fused Filament Fabrication
 (
 FFF
). FFF is the name used prior to the patent expiration of FDM in 2009.

 In the following sections, we will learn about the Ender 3 series of 3D printers with a focus on the Ender 3 V2. Although the concepts covered do apply to other 3D printers, having an Ender 3 will make this section a little easier to navigate.

 Ender 3 models

 The first

 Ender 3 was released in 2018 and its design was open sourced a few months after. The following are versions of the Ender 3 printer, starting with the basic version.

 Ender 3

 Sporting a

 220 mm by 220 mm by 250 mm build area, the
 Ender 3
 is the

 least expensive of the series and is considered the entry-level version. Aluminum extrusions provide the printer with a solid frame and both the print head and heated bed slide along their respective axes on v-slot wheels. The standard

 Ender 3 comes with a BuildTak-like sticker applied to the bed to

 provide adhesion for the first layer. We will discuss first-layer adhesion more in the upcoming
 Leveling the print bed
 section.

 What Is BuildTak?

 BuildTak is a

 proprietary product made by the company of the same name, a manufacturer of surfaces for use in 3D printing. The textured pre-cut sheets offer better adhesion than traditional methods such as painter's tape or glue sticks.

 Ender 3 Pro

 The
 Ender 3 Pro
 is an upgraded

 version of the Ender 3, though

 it has the same build area as the Ender 3 (220 mm by 220 mm by 250 mm) and is made with the same aluminum extrusions for the frame. The cooling fan for the main electronics board has been moved to vent underneath the printer to prevent bits of filament jamming the fan. The power supply has been upgraded and a removable magnetic flexible build plate has been added. This allows us to easily remove the build plate and "flex" off the printed part, as we can see in
 Figure 1.1
 :

 [image: Figure 1.1 – Magnetic flexible build plate

]

 Figure 1.1 – Magnetic flexible build plate

 Although having a removable flexible build plate certainly has its advantages, the magnetic layer

 of the build plate is limited to temperatures of around 80 degrees Celsius. This somewhat limits the types of materials

 that can be printed with this machine. We will discuss the different types of materials in the upcoming
 Materials available for 3D printing
 section.

 The biggest upgrade of the Ender 3 Pro is the wider aluminum extrusion for the
 y
 axis. This upgrade provides more stability to the
 y
 axis, resulting in better prints.

 Ender 3 Max

 The
 Ender 3 Max
 offers

 a 300 mm by 300 mm by 340 mm build area and a glass

 bed upgrade. The glass bed allows for printing with materials that require a high bed temperature for adhesion. The H-shaped base on the Ender 3 Max provides the extra stability required for a printer of this size.

 Ender 3 V2

 Coming with

 a new 109-mm (4.3-inch) HD color

 screen the
 Ender 3 V2
 is an upgrade to the Ender 3 and Ender 3 Pro. Keeping the same build area as the Ender 3 and Ender 3 Pro (220 mm by 220 mm by 250 mm), the Ender 3 V2 adds belt tighteners to the
 x
 and
 y
 axes. A small tool drawer has been added to the bottom of the machine for storing things like print nozzles, pliers, and scrapers.

 In
 Figure 1.2
 , we can see the printer with its major parts identified:

 [image: Figure 1.2 – The Ender 3 V2

]

 Figure 1.2 – The Ender 3 V2

 We will be

 using the Ender 3 V2 throughout the rest of the book as our demonstration

 machine. The projects and descriptions using this printer that follow can not only be applied to other Ender 3 series printers but to almost all modern FDM printers on the market today.

 Ender 3 S1

 The
 Ender 3 S1
 is the

 latest version of the Ender 3

 series. Unlike the previous versions of the Ender 3, the Ender 3 S1 comes with a direct drive extruder and built in auto bed levelling. The build area is slightly higher (220 mm by 220 mm by 270 mm) than the Ender 3 and Ender 3 V2. We will be exploring direct drive extruders in the upcoming section,
 Direct drive conversion kit
 where we look at upgrades for Ender 3 series 3D printers.

 Understanding the parts of the Ender 3

 Using
 Figure 1.2
 as a reference, let's take a closer look at the parts of an Ender 3 V2. The following

 are the major components of an Ender 3 V2 3D printer.

 Spool holder

 Starting from

 the top of the machine

 we have the
 spool holder
 . This is where we hang the spool of filament we are printing with. Spool holders can be as simple as we see in
 Figure 1.2
  or may be upgraded to include bearings for smoother operation. The position of the spool holder on the Ender 3 series of 3D printers has been criticized by some as the angle in which the filament enters the extruder is rather sharp. Customized upgrades

 such as a side spool mount (
 https://www.thingiverse.com/thing:3544593
) may be added.

 Extruder motor

 The
 extruder motor
 pushes

 the filament

 through

 the
 filament tube
 , on its way to the
 extruder hot end
 where it is melted.

 [image: Figure 1.3 – Extruder motor

]

 Figure 1.3 – Extruder motor

 As we

 can see in
 Figure 1.3
 , the white

 filament on the right passes through the extruder, which is driven by a stepper motor (the black and silver part on the bottom).
 Figure 1.3
 is dominated by a big blue knob on the top of the extruder, used to help load the filament by hand. Turning the blue knob counterclockwise loads the filament while turning it clockwise pulls the filament out of the machine. The blue knob also acts as a visual guide that the printer is extruding during printing.

 Extruder hot end

 The extruder hot end is the part on the 3D printer where the filament is melted. It contains a

 heater block and a heat sink, which is enhanced by the use

 of a fan. If we were to remove the extruder hot end's case we would see that the extruder hot end looks like
 Figure 1.4
 :

 [image: Figure 1.4 – Extruder hot end without casing

]

 Figure 1.4 – Extruder hot end without casing

 The filament tube enters the extruder hot end through the
 coupler
 at the top and is pushed through to the
 nozzle
 . The filament is heated using a heating cartridge connected to the heater block (not shown in
 Figure 1.4
). A thermistor is also connected to the
 heater block
 and is used to monitor the temperature (not shown in
 Figure 1.4
).

 In
 Figure 1.5
 , we see a

 close-up of the extruder hot end. Note the indication of the two fans, one for cooling the
 heat sink
 (
 hot end fan
) and the other for cooling

 the part (
 part-cooling fan
) as it is printed, as shown here:

 [image: Figure 1.5 – Extruder hot end

]

 Figure 1.5 – Extruder hot end

 The part-cooling fan speed is set during the creation of the print job and can also be adjusted

 manually using the display screen and control knob during

 printing. The amount of power and thus the strength of the part-cooling fan is variable and may be changed during a print job. This is not the case for the hot end fan as it is always on full power once the Ender 3 V2 is turned on.

 Filament tube

 Separating

 the extruder motor from the

 extruder hot end on our Ender 3 V2 is the filament tube. Our printing material is pushed along the tube by the extruder motor to the extruder hot end, where it is melted and deposited on the bed to form our print. Designs that use a filament

 tube to separate the extruder motor and extruder hot end are known as
 Bowden-style extrusion systems
 . The Ender 3 series of 3D printers utilizes this design.

 What is PTFE?

 Filament

 tubes are often called PTFE tubes as they are made from
 polytetrafluoroethylene
 (
 PTFE
). PTFE was used in the 1950s to create the first non-stick cooking pans under the trade name Tefal. By being both non-stick and resistant to high temperatures, PTFE is ideal for use in 3D printer extrusion systems.

 x axis and y axis tensioner

 x
 axis and
 y
 axis tensioners

 are featured on the Ender 3 V2. They

 are the blue knobs at the end of their respective axes. Keeping the belts tight assists in creating better prints as the belts stretch over time.

 Display screen and control knob

 The

 biggest noticeable difference between the Ender 3 V2 and the other Ender 3 models is the screen. As we can see in
 Figure 1.6
 , the 109-mm (4.3-inch) color screen displays four menu options when we turn on the machine:

 [image: Figure 1.6 – Ender 3 V2 display screen

]

 Figure 1.6 – Ender 3 V2 display screen

 On display

 is the current temperature of the nozzle and bed, and the values that they are set to; as we can see, both the nozzle and bed are set to
 0
 degrees Celsius and are currently measuring
 23
 and
 22
 degrees for the hot end and the bed respectively. We may also see the value of the feed rate and the Z-axis offset.

 The feed rate is a way of adjusting the speed of all four axes of the 3D printer (
 x
 ,
 y
 ,
 z
 , and extruder) together. It is adjusted during a print job to either speed up a print job or slow it down. The
 z
 -axis offset is used during printing to adjust the height of the print head relative to the bed. We may want to lower the
 z
 -axis offset if the filament is not sticking to the bed or raise it if the print head is scraping the build surface.

 Feed Rate versus Flow Rate

 Feed rate and flow rate are often confused with one another. The feed rate is controlled from the 3D printer's control panel and adjusts the speed in which the print job runs. Flow Rate controls the amount of material flowing from the nozzle and can either be set in the slicer before creating the 3D print job or adjusted during printing. We will discuss slicer programs in

 Chapter 2

 , What Are Slicer Programs?

 Menu

 options are selected using the control knob. Turning the knob in one direction or another moves the selected menu option around. In
 Figure 1.6
 , the
 Print
 menu option is currently highlighted. Clicking on the knob selects the option. Please note that even though the screen may look like a touch screen, it is not.

 Glass bed

 Starting

 with the Ender 3 V2, a tempered

 glass bed was introduced. The tempered glass bed offers a flatter surface on which to print, compared to other bed materials. A coating added to the tempered glass bed further increases the adhesion of the filament to the bed.

 Leveling wheels

 Our Ender 3 V2

 has four
 leveling wheels
 located

 underneath the four corners of the bed. As the name implies, these are used to level out the bed of our printer. We will use these wheels in the
 Leveling the print bed
 section.

 USB port and microSD card slot

 The USB

 port and

 microSD slot are located on the bottom left side of the machine. We use

 the microSD slot to load a microSD card containing our print jobs. We can also connect the printer to a computer using the USB.

 Using a Standard SD Card

 Some of us

 may find working with microSD cards a little troublesome due to their small size. A microSD-to-SD card extension adapter is a popular Ender 3 upgrade.

 Upgrading the Ender 3

 Due to the

 popularity of the Ender 3 series printers, many upgrades and additions exist. The following is a list of upgrades and additions that are available, but note that this is in no way a complete list.

 Dual-gear extruder

 A
 dual-gear extruder
 is a

 popular upgrade

 with the Ender 3 series printers. Adding dual gears to the extruder motor assembly adds extra grip, as we can see in
 Figure 1.7
 :

 [image: Figure 1.7 – Dual-gear extruder kit

]

 Figure 1.7 – Dual-gear extruder kit

 Having the filament guided by two grips is only possible if the two sides of the rolling channel guiding the filament are synchronized or geared to each other. This extra gripping of the filament reduces skipping as the filament moves through the extruder.

 As we can see in
 Figure 1.7
 , the spindle that is attached to the motor is geared at the bottom. When assembled, this lines up with the spindle that attaches to the arm of the extruder

 motor assembly. We can see that the gripping area of the

 motor spindle is above the geared area. When in place, this lines up with a similar grip on the arm spindle. The two spindles work in sync to pull the filament from the roll toward the extruder hot end.

 Dual-gear extruder kits are relatively inexpensive and will assist in eliminating filament slippage. Please note that we must change the extruder motor steps per mm setting after installing a dual-gear extruder.

 Nozzles

 Typically, 3D printers come with a standard brass nozzle with a 0.4-mm hole; however, nozzles with

 different diameters may be purchased rather

 inexpensively. Nozzle hole diameters come in a variety of sizes, including 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.8 mm, and 1.0 mm.

 Smaller hole diameters increase the printing time but produce more detailed prints. Larger nozzle holes reduce the printing time but at the cost of quality.

 3D printer nozzles are typically made of brass. Brass offers excellent heat transfer for the price. Brass nozzles do tend to wear quickly however and are not well suited to materials that are a little rougher in texture such as wood and carbon fiber. For such materials, stainless steel and hardened steel nozzles are desired. In
 Figure 1.8
 , we can see from left to right a 0.4-mm brass nozzle, a 0.4-mm stainless steel nozzle, and a 0.6-mm hardened steel nozzle:

 [image: Figure 1.8 – Various 3D printer nozzles

]

 Figure 1.8 – Various 3D printer nozzles

 As we

 see in in
 Figure 1.8
 nozzles may have different thread sizes. For our

 Ender 3 V2, we need to use nozzles with M6 threading.

 Direct drive conversion kit

 Like many

 3D printers on the market, the

 Ender 3 V2 comes equipped with a Bowden tube style extrusion system. To understand what exactly this is, let's look at the left-hand diagram in
 Figure 1.9
 :

 [image: Figure 1.9 – Bowden tube extrusion versus direct drive extrusion

]

 Figure 1.9 – Bowden tube extrusion versus direct drive extrusion

 With
 Bowden tube extrusion
 , the filament

 is pushed through the PTFE tube (Filament Tube) into the heater block through the heat sink, where it is melted and deposited

 onto our printer bed. By contrast, as we can see in the right-hand diagram, a
 direct drive
 extrusion system pulls the filament toward the heater block through the heat sink to the nozzle.

 With Bowden tube extrusion, the extruder motor is mounted separately from the other parts. With direct drive extrusion, the extruder motor is mounted with the heat sink and heater block.

 Direct drive

 extrusion kits for the Ender 3 series printers

 are not particularly expensive and may be installed with relative ease. We will be using the stock Bowden tube extrusion setup for the projects in the book.

 Is Direct Drive Better Than Bowden?

 The debate as to which system (direct drive vs. Bowden) is better can be a heated one in the maker community. In a Bowden tube extrusion system, the print head (including the heat sink, heater block, and nozzle) moves more quickly than in a direct drive extrusion system due

 to its lighter weight (as the extruder motor is separate). However, direct drive extrusion systems tend to work better with flexible materials than Bowden tube extrusion systems as it is easier to pull a flexible filament into the heater block than it is to push it through a tube.

 OctoPrint with a Raspberry Pi

 Another popular 3D

 printer upgrade is
 OctoPrint
 . Using a Raspberry Pi

 connected to our 3D printer, we can use OctoPrint to run and monitor print jobs remotely. This includes hooking up a USB camera for video monitoring.

 We can

 upgrade our OctoPrint setup with items such as OctoDash to provide a touchscreen interface to OctoPrint. With OctoDash, the 3D printer can be controlled right at the printer itself. Other additions to OctoPrint include the Enclosure plugin, which uses additional sensors to monitor the enclosure the printer may be in.

 The Spaghetti Detective plugin and service for OctoPrint provides AI monitoring for our prints. An alert is sent when the Spaghetti Detective service determines that a print has failed.

 Alternatives to OctoPrint include AstroPrint and Repetier-Server.

 Tent enclosure

 Arguably one of the best additions we can make to our 3D printer setup is an enclosure such as

 a tent. Tent enclosures are constructed

 like a tent used for camping and usually have more than enough room to fit our Ender 3 V2.

 Enclosures allow a consistent temperature, resulting in better print quality. Enclosures are perfect for 3D printers that are used in garages. Adding a wireless dehumidifier inside the enclosure will help keep the humidity down and will assist in printing with filaments that are susceptible to retaining moisture. Tent enclosures also offer a layer of protection as they are generally fireproof.

 In
 Figure 1.5
 , we can see an Ender 3 V2 inside a tent enclosure.

 All-metal hot end

 If we were

 to take the hot end of our stock

 Ender 3 V2 apart, we would see that the PTFE tube extends all the way to the nozzle. This is illustrated in the left-hand diagram in
 Figure 1.10
 :

 [image: Figure 1.10 – A PTFE-tube-to-nozzle setup versus an all-metal hot end

]

 Figure 1.10 – A PTFE-tube-to-nozzle setup versus an all-metal hot end

 This type of setup works well for materials with lower melting points such as PLA as temperatures above 230 degrees Celsius or so will start to melt the PTFE tube, causing blockages.

 For higher-temperature materials such as ABS, an all-metal hot end is desired. As illustrated on the right in
 Figure 1.10
 , with an all-metal hot end the PTFE tube ends at the heat break, where the filament continues through to the heater block without the PTFE tube.

 Bi-metal heat break

 An upgrade for

 the all-metal hot end is a bi-metal heat break. The bi-metal

 heat break is made up of two separate metals, a stainless-steel inner tube, and a brass outer tube. We can see a picture of a bi-metal heat break in
 Figure 1.11
 :

 [image: Figure 1.11 – Bi-metal heat break

]

 Figure 1.11 – Bi-metal heat break

 Due to the poor temperature transfer from the thin inner stainless-steel tube to the outer brass, the bi-metal heat break keeps higher temperatures from creeping up the extruder hot end to the heat sink. This allows for faster extrusions and the ability to print with higher-temperature materials.

 PEI build plate

 PEI (or polyetherimide) build plates
 offer an excellent alternative to existing build plates. They

 are relatively maintenance-free, only

 requiring cleaning with isopropyl alcohol. Their flexibility makes it easy to "flex" a part off the build plate.

 PEI build plates have great adhesion properties for 3D printer filament. Some PEI build plates for the Ender 3 series are two-sided, with a smooth side and textured side (for creating prints with a textured bottom layer).

 Auto bed leveling sensor

 Bed leveling

 for a stock Ender 3 series

 printer involves adjusting the leveling wheels under the print bed. Another option is to automate the process with an auto bed leveling sensor such as a BL Touch. In this book, we will be leveling our bed manually and will not be installing an auto leveling system.

 Capricorn tubing

 One upgrade

 for our PTFE filament tube is to use Capricorn PTFE tubing. Capricorn

 started out in 2016 with the goal of producing the best Bowden-style tubing. Capricorn tubing generally comes in blue and has a higher temperature rating than typical PTFE tubes.

 DIY upgrades

 Due to the

 popularity of the Ender 3 series printers, there

 are many DIY upgrades available to 3D print. In fact, the small tool drawer that exists on the Ender 3 V2 was adapted from DIY Ender 3 drawers found online. Websites such as
 www.thingiverse.com
 and
 www.myminifactory.com
 offer many 3D files of Ender 3 upgrades that we can download and print ourselves.

 Now that we are more familiar with the Ender 3, let's perform the most necessary task for ensuring that our print jobs are successful – leveling the bed.

 Leveling the print bed

 Arguably the most important thing we can do to ensure high-quality 3D prints is to properly level

 the print bed. In this section, we will manually level our print bed by moving the extruder hot end to each corner and adjusting the bed using the leveling wheels.

 Before we level the bed on our 3D printer, we should take note of the importance of having a perfectly flat build surface sitting on top of the bed. Having an uneven build surface makes the adhesion of the first layer difficult. Choosing the right build plate material will make the task of leveling out the bed much easier.

 Glass is an extremely popular build surface due to its flatness. Borosilicate glass is often used for build surfaces due to its thermal properties as it can withstand great temperature variations without cracking.

 Leveling the corners of the bed

 Leveling the

 corners on the bed is the easiest way to level the print bed with relation to the nozzle. To ensure that this works, the surface of the build plate material (the glass plate for the Ender 3 V2) must be perfectly flat.

 To begin the process, we will use the control panel again. We will first set the print head (extruder hot end) to the home position and then move it around the build plate. The following instructions are for the Ender 3 V2, while other Ender 3 printers or 3D printers with Marlin firmware will work similarly:

 	Prepare a small rectangular piece of paper about 10 cm by 5 cm.

 	
 Scroll to the
 Prepare
 menu and click on it. For other Ender 3 models, click on the control knob, navigate to the
 Prepare
 menu, and click on it.

 	
 Navigate to the
 Auto Home
 menu option and click on it. Observe that the print head moves to the home position.

 	
 Scroll to the
 Move
 menu option and click the control knob to select it.

 	
 Scroll down to the
 Z
 menu option, click the control knob to select it, and dial in the value
 20
 by turning the dial clockwise. Click to set it. Observe that the print head moves up 20 mm.

 	
 Scroll to the
 X
 menu option and click to select.

 	
 Set the value to
 20mm
 and click to set it. Observe that the print head moves 20 mm in the X direction.

 	
 Scroll to the
 Y
 menu option and click to select.

 	
 Set the value to
 20mm
 and click to set it. Observe that the print head moves 20 mm in the Y direction.

 	
 Slide

 the piece of paper under the print head:

 [image: Figure 1.12 – Bed leveling

]

 Figure 1.12 – Bed leveling

 	
 Scroll down to the
 Z
 menu option, click the control knob to select it, and dial in the value
 0
 by turning the dial clockwise. Click on the control knob to set this. Observe that the print head moves down and touches the piece of paper.

 	
 Using the leveling wheel closest to the point on the bed, turn the wheel to either lower or raise the bed so that the paper can move freely under the print head with

  a slight tug. The paper should not rip, nor move freely without a little bit of resistance (
 Figure 1.12
). Use the graphic in
 Figure 1.13
 to determine how to move the bed either up or down:

 [image: Figure 1.13 – Adjusting the bed position

]

 Figure 1.13 – Adjusting the bed position

 	
 Repeat
 steps 6 to 12
 with an
 x
 value of
 180
 and
 y
 value of
 20
 .

 	
 Repeat
 steps 6 to 12
 with an
 x
 value of
 180
 and
 y
 value of
 180
 .

 	
 Repeat
 steps 6 to 12
 with an
 x
 value of
 20
 and
 y
 value of
 180
 .

 	
 Set the
 z
 axis to
 20mm
 .

 	
 Select
 Auto Home
 to home the printer.

 We have

 just leveled the bed by manually leveling the corners.

 Mesh bed leveling

 Our print bed should be leveled and ready to print after leveling the corners. However, in cases

 where it dips or rises between the corners, we have a few options we could apply to address this, as follows:

 	Replace the build surface with a new one.

 	
 Print using rafts (we will investigate this in

 Chapter 3

 , Printing Our First Object
).

 	Install mesh bed leveling on our Ender 3 V2.

 Buying a new build surface like a new glass bed or PEI plate is an easy option to take as our build plates do get worn with use. There are many build surfaces for the Ender 3 to choose from.

 However, if that option is not available, we can do what used to be common prior to glass beds, which is to print our parts on rafts. Basically, rafts are flat surfaces that are printed onto our bed before printing our part (a raft for the part, so to speak). Rafts fell out of favor when glass beds became popular, as rafts can sometimes be difficult to remove from the part and they waste precious material that will only be thrown out.

 The third option we can explore (for the Ender 3 V2 only) is mesh bed leveling:

 [image: Figure 1.14 – Mesh bed leveling

]

 Figure 1.14 – Mesh bed leveling

 As we can see in
 Figure 1.14
 , mesh bed leveling involves taking measurements at many points

 on the bed. These values are then used to calculate where to set the
 z
 axis on the print head as it moves around the bed.

 To get mesh bed leveling on our Ender 3 V2 we must update the firmware. The firmware is the program that runs on the controller board of our 3D printer. The firmware may be updated in a couple of ways:

 	By loading pre-compiled firmware onto a microSD card and installing it on our Ender 3 V2

 	
 By loading and compiling the firmware source code using a program such as Arduino IDE
 A Few Good Reasons to Update the Firmware

 Upgrading the firmware on our Ender 3 V2 will give us extra features in addition to mesh bed leveling. Scrolling text for long filenames is added, as well as the ability to load files from subfolders and not just the root. A new main menu option called
 Level
 pushes
 Info
 to the last option under the
 Control
 menu. Also, a white border has been added when selecting menu options, making the main menu easier to see.

 We will

 use the first option to install mesh bed leveling on our Ender 3 V2.

 Updating the firmware

 We can find

 a list of Ender 3 V2 firmware with mesh bed leveling at the following GitHub repository:
 https://github.com/Jyers/Marlin/releases
 .

 To know which version of the firmware to download, we need to find out which board is installed in our Ender 3 V2 (please note that this is an upgrade for the Ender 3 V2 and isn't available with previous Ender 3 printers). To do this, complete the following steps:

 	Remove the cover of the main controller board by removing one screw from the top and three screws from the bottom.

 	
 Place the Ender 3 V2 on its side and observe the board number. See
 Figure 1.15
 to find this:

 [image: Figure 1.15 – Finding the board number on our Ender 3 V2

]

 Figure 1.15 – Finding the board number on our Ender 3 V2

 	
 For our

 Ender 3 V2 we can see that the board number is V4.2.2. Download the appropriate
 .bin
 file from the website listed at the beginning of this section. For our printer, we will download the
 E3V2-ManualMesh-5x5-v4.2.2.bin
 file.

 	
 Be sure to download the correct
 E3V2-ManualMesh-5X5
 file for the board version. We will be calibrating a 5x5 mesh. Load the
 .bin
 file onto a formatted microSD card.

 	
 Ensure that the Ender 3 V2 is turned off. Load the microSD card into the printer. Turn on the Ender 3 V2 and observe that the firmware has been updated. The
 Info
 menu

 option should be replaced by the
 Level
 menu option. There should be
 x
 ,
 y
 , and
 z
 values for the print head displayed at the bottom of the display screen.

 We are now ready to level the bed using mesh bed leveling.

 Running mesh bed leveling

 With the

 firmware installed, mesh bed leveling involves taking
 z
 -axis measurements at 25 points on the bed. At the end of the process, the mesh is saved and used when we 3D print.

 To level our bed with mesh bed leveling, do the following:

 	
 From the main menu navigate to the
 Level
 menu option and click the control knob.

 	Observe that the print head moves to the home position before moving to the first mesh point.

 	Slide a 10cm by 5cm piece of paper under the print head. The paper should slide under the print head with a slight tug.

 	
 If the paper does not slide under the print head with a little resistance, then we must raise or lower the print head. Using the
 Microstep Up
 and
 Microstep Down
 options, adjust the print head accordingly by pressing and holding the control knob. Please note that up and down are opposite of what they were when we were leveling the print bed with the leveling wheels.

 	
 Scroll up and click on the
 Next
 menu option when satisfied with the level. Observe that the print head moves to the next position.

 	
 On the last measurement point there will be a menu option called
 Save Mesh
 . Scroll up to this menu option and click the control knob to save the mesh. Observe a double beeping sound indicating that the mesh has been saved.

 	
 Ensure that the
 Leveling Active
 check box from the
 Level
 menu is checked.

 We have

 now successfully leveled our print bed using mesh bed leveling.

 Automatic mesh bed leveling

 Some of us

 may have noticed a file called
 E3V2-BLTouch-5x5-v4.2.7.bin
 when we were downloading the firmware. BL Touch is an after-market sensor that we can add to our Ender 3 V2 series printer. We would use firmware such as this if we had an automated leveling sensor such as BL Touch installed on our printer.

 How Often Do We Need To Level The Bed?

 The bed of our 3D printer should not need leveling very often if we take care not to apply too much pressure to the bed when removing prints. The most common mistake many make is not letting the bed cool down to room temperature before removing the printed part. In most cases, the printed part will just slide off the glass bed once it has returned to room temperature.

 Now that we have leveled our print bed, let's take a look at some of the material available for use in 3D printing.

 Materials available for 3D printing

 It used to

 be that there were essentially only two materials

 available for 3D printing,
 Poly-Lactic Acid
 (
 PLA
) and
 Acrylonitrile Butadiene Styrene
 (
 ABS
). This has changed considerably over the

 last few years. The result has not only given us new materials with which to 3D print; it has changed what we can make with our 3D printers.

 Materials used for FDM 3D printing come in the form of a rolled plastic filament of either 1.75 mm or 2.85 mm in diameter. A spool made of plastic, cardboard, or metal is used to hold the filament. Spoolless filament for installing on a reusable spool is also available.

 Let's look at the materials we can use for 3D printing, starting with PLA and ABS.

 Poly-Lactic Acid (PLA)

 PLA
 is the

 most used material for 3D printing. It is made from

 sugar cane or corn starch and is biodegradable, making it an eco-friendly option. Compared to many other filament materials, PLA is extremely easy to work with.

 Although not requiring a heated bed (many early 3D printers did not have heated beds), PLA does benefit greatly from heat applied to the bed due to its low melting temperature, which increases its stickiness.

 Figure 1.16
 shows a part for a small desktop monitor table printed in red PLA:

 [image: Figure 1.16 – A part printed on the Ender 3 V2

]

 Figure 1.16 – A part printed on the Ender 3 V2

 Early PLA was quite brittle, making it unsuitable for many applications, but in recent years PLA has got a lot better, especially in terms of its strength.

 When printed at around 200 degrees Celsius at the hot end and 60 degrees Celsius on the bed, PLA provides an excellent finish (temperature may vary with manufacturer).

 PLA can

 be glued with epoxy, providing opportunities to break

 up larger objects into smaller parts.

 Acrylonitrile Butadiene Styrene (ABS)

 ABS
 is

 another common

 material for 3D printing and is a popular plastic for making toys. LEGO blocks, for example, are made from ABS.

 In
 Figure 1.17
 we see the cat figurine printed in ABS using the G-code file that comes with the Ender 3 V2:

 [image: Figure 1.17 – Cat figurine printed with ABS

]

 Figure 1.17 – Cat figurine printed with ABS

 ABS prints with a certain smell that many find unpleasant and thus printing in a separate room is encouraged.

 ABS produces prints that are more durable than PLA and with a higher melting temperature. This makes it more ideal in situations where a part may be subjected to higher

 temperatures. Having ABS stick to the

 print bed can be challenging. A heated bed is necessary to produce prints that do not warp upward at the edges and stay flat on the bed throughout the print job. ABS should be printed with a nozzle temperature of around 240 degrees Celsius and a bed temperature of 90 degrees Celsius.

 An enclosure is encouraged with ABS printing to avoid cooling cracks on the part during printing.

 ABS prints can be smoothed with acetone to hide the layer lines. As we can see in
 Figure 1.17
 , layer lines around the top of the print are noticeable. Subjecting our print to an acetone vapor bath will melt the lines together, resulting in a smooth professional-looking 3D print.

 An alternative to ABS is ASA, which has similar properties but with UV protection. This makes ASA well suited for outdoor applications.

 Glycolyzed Polyester (PETG)

 PETG
 is a

 modified version of
 PET
 (or
 polyethylene terephthalate
), a plastic used extensively in the production of water bottles

 and food containers since the 1990s. Adding glycol

 to PET to reduce its brittleness turns it into PETG.

 PETG filament prints almost as easily as PLA and provides the strength of ABS with a lower melting temperature. It is known for its impact resistance, light transmission (when transparent filaments are used), and its food-contact safety approval. In
 Figure 1.18
 , we see two parts that make up a clamp for a CNC router:

 [image: Figure 1.18 – CNC router part made with two different materials

]

 Figure 1.18 – CNC router part made with two different materials

 The part

 on the right was printed with black PETG. PETG parts tend to be shinier and less brittle than PLA. PETG works well for functional parts. It is

 exceedingly difficult to glue PETG parts together so other construction techniques, such as incorporating nuts and bolts, must be used.

 PETG and Glass Beds

 PETG should not be printed directly to a glass bed as it sticks a little too well. Removing it from a glass bed can result in chips to the glass and possibly an expensive repair.

 High-Impact Polystyrene (HIPS)

 HIPS
 has

 similar properties to ABS

 but is lighter in weight. HIPS dissolves easily in d-limonene, making it an ideal dissolvable support material for ABS and other materials. A 3D printer with a dual extrusion system (see
 Figure 1.19
) is required when using a

 different material such

 as HIPS as a support material, as shown here:

 [image: Figure 1.19 – Dual extruder 3D printer

]

 Figure 1.19 – Dual extruder 3D printer

 Dual Extruder 3D Printers

 Dual

 extruder 3D printers (not to be confused with dual-gear extruders) use two extruders that move together along the
 y
 and
 z
 axes but opposite to each other on the
 x
 axis. For dissolvable support prints, one extruder extrudes the support material, such as HIPS or PVA, and the other extruder delivers the material with which we want to print. Dual extruder 3D printers are also referred to as IDEX 3D printers.

 Printing with HIPS requires a heated bed and should be done in a separate room due to the fumes. When

 not used as a support material, parts

 made with HIPS tend to be lightweight and rigid and may be easily sanded and painted.

 Polyvinyl Alcohol (PVA)

 PVA
 is to PLA

 what HIPS is to ABS, a dissolvable

 support material. In the case of PVA, however, it is dissolvable in warm water. PVA is very hygroscopic (meaning it absorbs moisture) and must be as dry as possible when printed with.

 PVA requires a heated bed set to a temperature of around 60 degrees Celsius. PVA is printed with a nozzle temperature between 190 – 210 degrees Celsius. When used with dual extruder 3D printers, the extruder loaded with PVA should have its heater block turned off when not in use so as to avoid jamming.

 Carbon fiber

 Carbon fiber
 is used

 to lace other filament types, such as PLA, ABS, nylon, and PETG,

 to make them stronger. Prints made with a carbon fiber-laced filament can be made lighter due to this additional strength. It should be noted, however, that carbon fiber is abrasive to the nozzle on our extruder and thus a hardened steel nozzle is recommended when printing with carbon fiber-laced filaments. In
 Figure 1.20
 , we can see an arm for a quadcopter 3D printed with a carbon fiber-laced PETG filament:

 [image: Figure 1.20 – Quadcopter arm

]

 Figure 1.20 – Quadcopter arm

 This part weighs just 8.5 grams and cannot be bent by hand.

 Nylon

 Nylon
 is one of

 the toughest plastics available. It is used in

 many products, such as zip ties. 3D printing with nylon can be challenging as it is a hygroscopic material and must be printed dry. Nylon prints are tough but slightly flexible.
 Figure 1.21
 shows a 3D-printed nylon replacement buckle for a hockey helmet:

 [image: Figure 1.21 – 3D-printed buckle

]

 Figure 1.21 – 3D-printed buckle

 The buckle flexes enough to be pushed over the metal button on the helmet.

 Dry Boxes

 Many materials

 used in 3D printing are very hygroscopic, meaning they absorb moisture from the air. This causes issues when printing as their diameters swell and jam up the extruder. A solution to this issue is to print from a dry box. A dry box is an airtight storage container with a small hole where filament is passed through and fed to the extruder on a 3D printer. Dry boxes may be purchased or easily made from existing airtight containers. There are also many DIY designs for dry boxes at places such as Thingiverse.com.

 Flexible materials

 Flexible filament

 can be used to print things such as phone cases and

 gaskets. In
 Figure 1.18
 , the part on the left was

 printed with a flexible material called
 NinjaFlex
 .

 The term
 Thermoplastic Elastomer
 (
 TPE
) is used to describe the blend of elastic and

 thermoplastic (soft rubber and hard plastic) that makes

 up the flexible material we 3D print with.
 Thermoplastic Polyurethane
 (
 TPU
) is a common type of TPE that is more on the rigid side.

 To better

 understand flexible filament and its uses, it is good to understand the
 Shore hardness scale
 . Comprising measurement devices (called durometers) calibrated at different strengths, there are three main scales: Shore OO, Shore A, and Shore D. In
 Figure 1.22
 , we can see the hardness of common non-metallic items:

 [image: Figure 1.22 – Shore hardness scale

]

 Figure 1.22 – Shore hardness scale

 From
 Figure 1.22
 , we can see that a shopping cart wheel has a Shore hardness of 95A or 50D. The NinjaFlex used in
 Figure 1.18
 has a hardness of 85A, meaning it is harder than a pencil eraser but softer than a shopping cart wheel.

 Bowden tube

 extrusion systems tend to struggle at printing with flexible

 materials. Generally, a direct drive extrusion system is used to 3D print with flexible materials.

 Other materials

 Other materials

 available for 3D printing include
 wood-laced filaments
 ,
 polycarbonate filaments
 ,

 metal fi

 laments

 ,
 PolyEtherEtherKetone (PEEK) filaments
 , and so on. Many of the high-performance

 filaments

 require

 industrial

 3D printers with heated chambers and could not be printed with an Ender 3 series printer.

 As we can see, there are many materials available for use with 3D printing, and they are getting better and stronger all the time. In this book, we will work mainly with PLA and ABS.

 Summary

 In this chapter, we discussed the Ender 3 series range of 3D printers, with a particular focus on the Ender 3 V2. We looked at the major components of the Ender 3 V2 and described some of the upgrades and additions we can add to it.

 In the hands-on section of this chapter, we leveled the bed on our Ender 3 V2, by far the most important step toward quality 3D prints from a 3D printer. We explored upgrading the firmware on our Ender 3 V2 to get access to the mesh bed leveling functionality, as well as some other upgrades included in the new firmware.

 We closed off the chapter by looking at the various materials we can 3D print with, including a look at the Shore hardness scale in order to understand flexible materials in a bit more depth.

 In the next chapter, we will look at the software used to create print jobs for our 3D printer on our way to bringing our 3D design ideas to life.

 Chapter 2

 : What Are Slicer Programs?

 To 3D-print an object, we must first create instructions on how to do so in a language that the 3D printer understands. This language is

 called
 G-code
 , and to describe it in its simplest form, it is code that tells the printer head where to move and when. To create G-code, we utilize software

 called slicers.

 In this chapter, we will create simple G-code programs before we investigate the various slicer programs in use today for 3D printing.

 In this chapter, we will cover the following topics:

 	Controlling a 3D printer using G-code

 	Common FDM slicer programs

 	Slicer programs for liquid resin 3D printers

 Technical requirements

 In this chapter, we will get acquainted with 3D printers. To complete the hands-on portion, we will require the following:

 	A late-model 3D printer, preferably the Creality Ender 3 V2.

 	A Windows, macOS, or Linux computer with a USB cable.

 	
 The code and images for this chapter can be found here:
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter2
 .

 Controlling a 3D printer using G-code

 Computer Numeric Control
 (
 CNC
) is

 a method of

 controlling

 a machine from a computer or controller. Early CNC machines from the 1940s used punch tape and were used to crudely control machines of the time. Combining advanced computer systems with machines in the 1960s gave way to the CNC machine we know today.

 3D printers

 are, in essence, a form of CNC machine. While

 CNC machines are subtractive as they chip away material to make parts, 3D printers are additive as they deposit material. G-code is the language that CNC machines and 3D printers use to communicate with their respective controllers.

 In this section, we will explore G-code and use it to control our printer.

 What is G-code?

 So, what exactly is

 G-code? As mentioned, G-code is the language that 3D printers and CNC machines use for instructions. To get a more detailed understanding, let's look at how

 a computer

 communicates with a 3D printer.

 Looking at
 Figure 2.1
 , we can see that the computer sends G-code commands to the 3D printer and receives sensory data back:

 [image: Figure 2.1 – Communicating with a 3D printer

]

 Figure 2.1 – Communicating with a 3D printer

 Such G-code commands may be used to home the printer or set the temperature of the hot end or bed. Sensory data coming back can be the hot end temperature, the bed temperature, or an

 indication that one of the limit switches

 for an axis (
 x
 ,
 y
 , and
 z
) has been engaged.

 To gain a deeper understanding of G-code, let's break down G-code commands.

 Understanding G-code

 G-code for a 3D printer

 consists of commands that start with the letter
 G
 or the letter
 M
 and control the movement and functionality of the 3D printer.

 In
 Figure 2.2
 , we can see a list of G-code statements on the left. If we were to execute each statement sequentially, the print head would be positioned in the spot we see in
 Figure 2.2
 :

 [image: Figure 2.2 – G-code commands used with a 3D printer

]

 Figure 2.2 – G-code commands used with a 3D printer

 The first statement,
 G28
 , homes the print head on all axes. The
 G0 Z10
 command moves the print head to 10 mm above the bed.
 G0 X120 Y120 Z20
 then moves the print head 120 mm in the
 x
 direction, 120 mm in the
 y
 direction, and 20 mm in the
 z
 direction (the position as shown in
 Figure 2.2
).

 The following are

 some common G-code commands:

 	
 G0
 – fast linear motion

 	
 G01
 – controlled linear motion set by an additional
 F
 parameter (for example,
 G1 Z15.0 F9000
)

 	
 G28
 – auto home

 	
 M104
 – set the hot end temperature

 	
 M140
 – set the bed temperature

 	
 M117
 – set the LED message

 	
 M106
 – set the

 cooling fan speed

 By stringing together G-code commands in a file, we can have our 3D printer perform tasks such as executing print jobs and bed leveling.

 Using Pronterface to control our 3D printer

 Pronterface

 is a 3D printer control and printing application

 written in Python. Although a little dated, it offers a simple GUI in which to control our 3D printer. To install Pronterface onto our computer, follow these steps:

 	
 Navigate

 to
 http://www.pronterface.com
 .

 	
 Click on the
 DOWNLOAD
 link.

 	Find the appropriate installation file, and then download and install it (please note that the program may be referred to as Printrun).

 Once installed, open up Pronterface. We can use Pronterface for either the Ender-3 V2 or the other 3D printers. To connect the computer to our printer, do the following:

 	Connect the Ender-3 V2 or another 3D printer to the computer using a USB cable.

 	
 From the
 Port
 selection at the top left, select the proper port for the printer.

 	
 Set the baud rate to
 115200
 (this value may be dependent on the 3D printer).

 	
 Click on the

 connect button and observe that

 the printer connects to the computer.

 Now that we have our printer

 connected, let's take a short look at the GUI. Observe the control wheel at the top left-hand side of the program, as shown in
 Figure 2.3
 :

 [image: Figure 2.3 – The Pronterface control wheel

]

 Figure 2.3 – The Pronterface control wheel

 To verify that we can control our printer with Pronterface do the following:

 	
 Click on
 10
 under the
 +Z
 button and observe that the print head moves up 10 mm in the
 z
 direction.

 	
 Click on the
 x
 homing button at the top left and observe that the print head moves left and stops at the
 x
 home position.

 Now that we have verified that we can control our printer using Pronterface, let's start writing some G-code. At the bottom right corner of Pronterface, observe a textbox with a button named
 Send
 beside it.

 Type the following into the textbox and click on
 Send
 :

 G28

 Observe that the print head is moved to the home position for all axes (
 x
 ,
 y
 , and
 z
).

 The G28 Command

 The
 G28
 command on its own will home all axes as we have observed. To home an axis by itself, put the axis name after
 G28
 – for example, to home the
 y
 axis, type in
 G28 Y
 .

 You may recall from

 Chapter 1

 ,
 Getting Started with 3D Printing
 , how tedious manually leveling the corners of our print bed was, so let's write some G-code to assist us.

 Leveling the corners with G-code

 Putting our

 G-code knowledge to work, let's create a bed leveling

 program. In a text editor (such as Notepad in Windows), type in the following and save it with the filename
 level-bed.gcode
 :

 G28

 G0 Z20

 G0 X20 Y20

 M0 Position paper

 G28 Z

 M0 Adjust level

 G0 Z20

 G0 X180 Y20

 M0 Position paper

 G28 Z

 M0 Adjust level

 G0 Z20

 G0 X180 Y180

 M0 Position paper

 G28 Z

 M0 Adjust level

 G0 Z20

 G0 X20 Y180

 M0 Position paper

 G28 Z

 M0 Adjust level

 G0 Z20

 G28

 Be sure to use the
 .gcode
 extension in the filename. Before we run our program, let's look at some of the commands we have just written.

 We start the

 program with
 G28
 , which we know homes the print head. From

 there, we move the print head up 20 mm (
 G0 Z20
), then 20 mm in the
 x
 direction (
 G0 X20
), and 20 mm in the
 y
 direction (
 G0 Y20
).

 The
 M0 Position Paper
 command creates a pause and displays the
 Position Paper
 message on the LCD screen of the printer. The printer will stay paused until we click on the control knob.

 It is time to run our program in Pronterface. To complete this, follow these steps:

 	
 From Pronterface, click on the
 Load file
 button located at the top center of the screen.

 	
 Locate
 level-bed.gcode
 and load it by clicking
 Open
 .

 	
 Click on the
 Print
 button at the top center of the screen.

 	
 Observe that the print head is homed before moving to the first leveling position. We should see the
 Position paper
 message on the LCD screen. Place a piece of paper the same size as we used in

 Chapter 1

 ,
 Getting Started with 3D Printing
 , under the print head.

 	
 Click on the control knob. Observe that the print head lowers to the print bed. Observe the
 Adjust level
 message on the LCD screen.

 	
 Referring to
 Figure 1.13
 from

 Chapter 1

 ,
 Getting Started with 3D Printing
 , adjust the nearest leveling wheel so that there is a slight tug on the paper. The paper should not rip.

 	
 Click on the

 control knob to move to the next leveling

 point.

 	
 Repeat until all four corners have been leveled.
 Running Our Code from the 3D Printer

 We actually do not need a computer connected to our 3D printer to run our
 level-bed.gcode
 program. We could just simply load it onto a microSD card and run it from the 3D printer. Running print jobs from the 3D printer itself is the most common way to run a print job, as it does not tie up a computer for hours.

 Congratulations are in store, as we have just written and run our own bed leveling program using a little bit of G-code! It is now time to look at slicer programs that create G-code for our 3D printers.

 Common FDM slicer programs

 As we discussed in the previous section, G-code is the language used to control 3D printers. G-code controls both the movement of the print head and the extrusion of plastic from the nozzle, which allows us to create physical objects with our 3D printer.

 But how do we create the

 G-code needed to print an object? Writing the G-code ourselves is obviously an exceedingly difficult thing to do. This is where slicers come in.

 Before we explore a few slicer programs available for our FDM 3D printer, let's look at what a slicer does.

 Slicing an object into G-code

 A

 slicer is

 software that takes 3D object files and converts them

 into G-code that our 3D printer understands.

 In
 Figure 2.4
 , we can see the process documented graphically:

 [image: Figure 2.4 – Converting a 3D object file into G-code

]

 Figure 2.4 – Converting a 3D object file into G-code

 A 3D design – in this case, a riser for a computer monitor – designed in
 Computer-Aided Design
 (
 CAD
) software

 is converted to a 3D object file. 3D object files are generally stored as STL, OBJ, or 3MF files, and are created using CAD software.

 The slicer analyzes the 3D object file and "slices" it into layers, divided along the
 z
 axis. Each layer is a series of G-code commands for the
 x
 axis,
 y
 axis, and the extruder. The number of layers is dependent on the layer height set in the slicer software.

 In
 Figure 2.5
 , we can see the first and last slices of our computer monitor riser:

 [image: Figure 2.5 – The first and last layer slices of a 3D-printed job

]

 Figure 2.5 – The first and last layer slices of a 3D-printed job

 As our object is 90 mm tall, when

 it is sliced with a 0.2 mm layer height, the result is

 G-code with 450 different
 z
 axis values or layers. Another way to look at it would be to visualize the print head moving up 0.2 mm on every layer 450 times during printing.

 As we can see, software to perform the slicing process is valuable. Let's look at the various software applications available to do this.

 Slicing software applications

 Many people

 confuse the software applications used to prepare and control a 3D printer with the slicing software itself. For example, Pronterface has functionality to prepare a 3D object file from the slicing stage to running the print job on the 3D printer. We can also control our 3D printer with Pronterface. However, for slicing functionality, Pronterface uses the program Slic3er, which itself is offered as a standalone program.

 The following are three of the available software programs we can use to create the G-code that our FDM 3D printer requires.

 Slic3r

 As mentioned,
 Slic3r
 is

 used as the slicing engine in other programs such as Pronterface and Repetier-Host. As a standalone program, Slic3r is incredibly powerful, offering control over a vast number of parameters.

 Slic3r is available for Windows, macOS, and Linux and can be

 found at
 www.slic3r.org
 . In
 Figure 2.6
 , we can see what Slic3r looks like once we open it up and load a file to be processed, with a few areas highlighted:

 [image: Figure 2.6 – The Slic3r main page

]

 Figure 2.6 – The Slic3r main page

 As we can see in
 Figure 2.6
 , the plater takes up the most space on the screen. A mount for a hygrometer sits on the build plate.

 Slic3r is considered fast

 at slicing. The following are some interesting features of Slic3r:

 	
 The default settings in the
 Print | Settings
 section make it easy to create G-code for our 3D printer. Clicking on the
 Export G-code
 button in this section creates a G-code file to load into our 3D printer. Slic3r is not used for 3D printer control.

 	Slic3r can change layer heights for part of a print. For example, our print job may start with a 0.2 mm layer height and change to a 0.1 mm layer height later in the print job. This is useful in situations where the top of a print may be rounded and smaller visible layer lines are desirable.

 	
 Another

 feature worth noting is the ability of Slic3r to create a series of SVG (vector) images using the
 Slice to SVG...
 option under the
 File
 menu. At one time, this functionality was one of the few ways to slice an object for SLA (Stereolithography or liquid resin printing). However, with the plethora of slicer programs for liquid resin printers today, the
 Slice to SVG...
 feature is not as useful as it once was.

 ideaMaker

 ideaMaker

 by Raise3D is an advanced slicing and 3D printer control program. Built specifically for Raise3D's brand of industrial 3D printers, ideaMaker can be used on 3D printers from other manufacturers, including the Ender-3 V2.

 ideaMaker is feature-rich, giving us the ability to cut models into pieces, easily add supports (automatic and manual), and even repair models with non-manifold edges. ideaMaker also can upload a print job directly to OctoPrint, creating an efficient slicing to printing workflow.

 To get a hands-on feel for ideaMaker, let's try out a few of these more distinctive features. In the following examples, we will demonstrate usage of the Free Cut, Repair, and Texture tools.

 Preparing our model

 Before we start, we need to

 install ideaMaker and load a model. To do this, follow these steps:

 	
 To download and install

 ideaMaker, go to
 https://www.raise3d.com/ideamaker/
 .

 	
 We need an object to load into ideaMaker. A quite common 3D printer test print is 3DBenchy. To download a 3DBenchy model

 , go to
 http://www.3dbenchy.com/download/
 .

 	
 To load our 3DBenchy model, use

 the
 Add
 button at the top left of the ideaMaker screen. Our 3DBenchy will be stored as a
 .stl
 file. For models downloaded from Thingiverse, the
 3DBenchy.stl
 file will be found in the
 files
 folder.

 	Observe that our 3DBenchy model is loaded onto the center of the build area:

 [image: Figure 2.7 – The 3DBenchy model loaded into ideaMaker

]

 Figure 2.7 – The 3DBenchy model loaded into ideaMaker

 Now that we have our 3DBenchy model loaded, it is time to cut it in half and repair the two halves.

 Cutting our object

 To cut our 3DBenchy

 into two parts, follow these steps:

 	Select the model using the left mouse button.

 	
 Select the
 Free Cut
 tool from the top toolbar:

 [image: Figure 2.8 – Using the Free Cut tool in ideaMaker

]

 Figure 2.8 – Using the Free Cut tool in ideaMaker

 	
 Observe that

 we can move the cutting plane (blue rectangle) around the model using the orbit circles or by typing in values into the
 Cutting Plane
 dialog box (
 Figure 2.8
). The
 Start Cut
 button cuts the model along the cutting plane.

 	After the model is cut, we can move the top part to be flat on the bed:

 [image: Figure 2.9 – The result of using the Free Cut tool in ideaMaker

]

 Figure 2.9 – The result of using the Free Cut tool in ideaMaker

 	
 There are now

 two models, and as we can see in
 Figure 2.9
 , they are invalid. Clicking on one, we see an error indicating non-manifold edges. To fix these errors, we need to click on the
 Repair
 icon at the top.
 What Does Non-Manifold Mean?

 We may see an error message about non-manifold edges with our objects after importing them into ideaMaker. To put it simply, non-manifold refers to shapes that cannot exist in the real world, such as a wall without a thickness. It is a good idea to fix non-manifold errors, as our 3D printer will not know how to print a part with such errors correctly.

 We have successfully cut and repaired an object in ideaMaker. Now, let's look at texturing.

 Applying textures in ideaMaker

 One of the most exciting

 features in ideaMaker is the ability to add

 textures to an object before printing it. Adding a texture not only strengthens the object but helps in taking away the attention that layer lines have in a 3D print, as shown in the following photo:

 [image: Figure 2.10 – A non-textured part versus a textured part using ideaMaker

]

 Figure 2.10 – A non-textured part versus a textured part using ideaMaker

 In
 Figure 2.10
 , we can see the effect of applying textures. The part on the left in the photo was printed without texturing, while the part on the right had a texture applied to it in ideaMaker.

 As we can see, texturing adds a dramatic effect to a part. There are many textures to choose from on the

 ideaMaker website. Let's try some texturing

 ourselves. To do so, follow these steps:

 	Load a new 3DBenchy object into ideaMaker (delete the objects from the previous section if they are still present).

 	
 Select the 3DBenchy object and click on the
 Texture
 icon at the top.

 	
 From the drop-down menu, select
 Custom Texture
 .

 	
 Click on the
 More
 drop-down menu and select
 Import from ideaMaker Library
 . Observe that our web browser is opened, and we are taken to the textures page of the ideaMaker website.

 	
 Select a pattern; in
 Figure 2.10
 , the
 Asian Wealth
 pattern was used. Observe that we are taken to a web page that is specific to the pattern.

 	
 Click on the
 Import to ideaMaker
 button. Observe that a pop-up window showing the URL for the texture pops up:

 [image: Figure 2.11 – Importing a texture from the ideaMaker website

]

 Figure 2.11 – Importing a texture from the ideaMaker website

 	
 Click on the
 Copy
 button.

 	
 Observe that

 when we return to ideaMaker, we are

 presented with a
 Download Texture
 dialog box. Click on the
 Download
 button to download the texture.

 	
 Click on the
 Next
 button.

 	
 Click on the
 Yes
 button to override the texture parameters.

 	Observe that our 3DBenchy object is now covered with a pattern:

 [image: Figure 2.12 – A 3DBenchy object with a texture applied

]

 Figure 2.12 – A 3DBenchy object with a texture applied

 Texturing in ideaMaker only

 affects the sides of an object and not the top or

 bottom once it is sliced. Now that we have taken a brief look at ideaMaker, let's look at Cura.

 Cura

 At the time of writing, Cura

 is the most popular 3D printer slicing software. Cura is developed by the Dutch company Ultimaker and is an open source program that is available to download for free.

 Being as popular as it, Cura has an extensive large third-party plugin marketplace. Plugins for such things as OctoPrint integration and OpenSCAD file support are some of the notable additions we can add to our Cura installation.
 Figure 2.13
 is a screenshot of some of the plugins available in Cura:

 [image: Figure 2.13 – A screenshot of the Cura marketplace

]

 Figure 2.13 – A screenshot of the Cura marketplace

 In addition to the many plugins available, Cura

 has many features built in that can be used for slicing our objects. One such feature is tree support, which creates unique support structures that resemble the trunk of a tree.

 What Are Supports in Slicing?

 For many objects, there are sections that are suspended from the air and require supports built from the build plate to print them. Think of an extended arm in a model of a person. Our 3D printer would not be able to print such a thing without a support structure built from the build plate. Cura comes with two different support types, normal or tree. Each support type is designed to be easily removed after printing.

 Let's get some hands-on experience with tree support by applying it to an object.

 Using tree support on an object in Cura

 To gain a better

 understanding of tree support, let's load a model and slice it. To do this, follow these steps:

 	
 In a web browser, navigate to
 https://ultimaker.com/software/ultimaker-cura
 and install Cura.

 	
 An object with a significant overhang demonstrates the use of tree support quite well. For this example, we will use the popular Baby Yoda model from
 MarVin_Miniatures
 on Thingiverse. Navigate to
 https://www.thingiverse.com/thing:4038181
 and download the Baby Yoda model.

 	
 The file we are looking for is called
 Baby_Yoda_v2.2.stl
 and is in the
 files
 folder.

 	
 In Cura, click on
 File
 |
 Open File(s)
 and load the
 Baby_Yoda_v2.2.stl
 object:

 [image: Figure 2.14 – Baby Yoda model from Thingiverse (MarVin_Miniatures)

]

 Figure 2.14 – Baby Yoda model from Thingiverse (MarVin_Miniatures)

 	
 To orbit in

 Cura, we click and hold the right mouse button while moving the mouse. If we click and hold the middle mouse button, we should be able to pan. Using these techniques, we can get an all-around view of the model.

 	
 When first installed, Cura defaults to the basic visibility for settings. To see all the settings, click on
 Preferences
 |
 Configure Cura...
 |
 Settings
 |
 Check all
 :

 [image: Figure 2.15 – Setting visibility in Cura

]

 Figure 2.15 – Setting visibility in Cura

 	
 Click on
 Close
 .

 	Now that we have access to all the settings, it is time to add some support to our Baby Yoda model. Click on the top-right panel to get a view of the print settings.

 	
 Expand

 the
 Support
 selection and click on
 Generate Support
 :

 [image: Figure 2.16 – The Cura Support settings

]

 Figure 2.16 – The Cura Support settings

 	
 For
 Support Structure
 , choose
 Tree
 from the dropdown.

 	
 Close
 Print settings
 by clicking on
 X
 at the top.

 	
 Click on the blue
 Slice
 button at the bottom right-hand side of the screen.

 	
 Observe the
 Slicing...
 message at the bottom right-hand side of the screen.

 	
 After a short while, observe that the message box at the bottom-right has changed. Information on how long the print job will take as well as the amount of filament needed to print the object is present. A
 Preview
 button is present as well, which you should click.

 	
 Observe a

 newly created tree-like support structure around the Baby Yoda model:

 [image: Figure 2.17 – Baby Yoda with tree support in Cura

]

 Figure 2.17 – Baby Yoda with tree support in Cura

 We now have some hands-on experience with both ideaMaker and Cura. We can use this knowledge in the upcoming chapters as we slice and 3D-print objects.

 Other programs we can use

 Our list of slicer programs is by no means a complete list. The following is a list of other programs we can consider:

 	
 PrusaSlicer
 is

 popular with Prusa-made printers. PrusaSlicer is based on Sli3r and can also be used with non-Prusa 3D printers.

 	
 Simplify3D
 is one of the few 3D printer applications with a cost ($149 USD). Simplify3D

 boasts customizable supports, although that advantage has disappeared in the last few years.

 	
 Skeinforge
 is a Python-based slicer and is considered a more complicated program to master. We can find the Skeinforge

 slicer engine in the Repetier-Host application.

 	
 Creality Slicer
 comes

 with Creality 3D printers and is a version of Cura optimized for Creality 3D printers.

 As we can see, there are many options we can choose from for slicing. Picking the right slicer may take some time.

 Which FDM slicer should I choose?

 Choosing the

 right slicing software for our projects may take some research. Slic3r has traditionally been at the cutting edge; however, other slicers are innovating quite quickly. At the time of writing, the popular program for slicing and preparing print jobs is Cura, although ideaMaker with its texturing abilities is starting to become more popular.

 What it really comes down to is personal preference. For some of us, one application may be more intuitive than another. For the duration of this book, however, we will be mostly using Cura.

 Before we delve into FDM slicers, let's expand our knowledge on slicers with a look at slicing programs for liquid resin printers.

 Slicer programs for liquid resin 3D printers

 As we will be

 working with FDM 3D printers throughout

 this book, we will be using FDM slicers such as ideaMaker and Cura. However, understanding that there is a whole different suite of slicers for 3D printers other than FDM 3D printers is good knowledge to have when we decide to venture beyond FDM 3D printing in the future.

 Liquid resin

 3D printing is a technology that has dramatically

 come down in cost to the point now where an entry-level liquid resin printer costs around $300 USD. So, what is liquid resin printing, and what are the software options available? We will start off by answering the first question.

 What is liquid resin printing?

 A liquid resin 3D printer

 is one where a series of images is projected onto a build plate through a clear bottom VAT (tank). This process is visualized in
 Figure 2.18
 :

 [image: Figure 2.18 – A visual representation of liquid resin printing

]

 Figure 2.18 – A visual representation of liquid resin printing

 As we can see, the constant incremental raising and lowering of the build plate in the VAT of photosensitive liquid resin creates an object on the build plate. The set layer height determines the size of the increment. So for example, if the layer height is set to 0.05 mm then the

 amount the build plate increments on each cycle is 0.05 mm.

 Why Use a Liquid Resin Printer?

 Liquid resin printers

 tend to have smaller build areas than FDM printers and require
 Personal Protection Equipment
 (
 PPE
) when

 handling toxic resins. Also, a curing process is required after the print is done. Despite these challenges, the detail that a liquid resin printer provides on small prints is exceptional. This makes liquid resin printers ideal for small figurines and electronic component cases.

 Unlike FMD 3D printers, liquid resin printers do not handle G-code but instead slices of images. Each image represents a layer of the object and is projected onto the build plate for a few seconds. By its very nature, liquid resin printing excels at fine details, as the resolution is not determined by the diameter of a nozzle.

 Let's look at a couple of the slicing programs available for liquid resin printing.

 Chitubox

 Chitubox is a

 free 3D printer slicing software program available for Windows, macOS, and Linux. Unlike many vendor-specific slicers, Chitubox produces files that can be used on many different liquid resin printers, such as the Anycubic series of liquid resin printers.

 In
 Figure 2.19
 , we can see a screenshot of Chitubox. A case for a Raspberry Pi Zero sits in the build plate area:

 [image: Figure 2.19 – A screenshot of Chitubox

]

 Figure 2.19 – A screenshot of Chitubox

 Clicking on the
 Slice
 button

 brings us to a page where we can analyze each layer before creating a file for our liquid resin printer:

 [image: Figure 2.20 – The slicing page in Chitubox

]

 Figure 2.20 – The slicing page in Chitubox

 We can also change properties such as
 Exposure Time
 and
 Lift Distance
 on this page. These properties as well as others are dependent on the resin and the printer used. In
 Figure
 2.20
 , we can see that the print job will take 1 hour and 8 minutes, which is relatively fast.

 The Anycubic Photon Workshop

 Unlike Chitubox, the Anycubic Photon Workshop

 is designed for use by Anycubic liquid resin printers. We can see a screenshot of this program in
 Figure 2.21
 :

 [image: Figure 2.21 – A screenshot of the Anycubic Photon Workshop

]

 Figure 2.21 – A screenshot of the Anycubic Photon Workshop

 As we can see, the slicing properties are available on the main page of the Anycubic Photon Workshop. There is also a slider that lets us view the different layers of our model. Although the

 Anycubic Photon Workshop does not support printers other than the Anycubic brand, the program is an excellent option for those of us with an Anycubic liquid resin printer.

 Summary

 In this chapter, we learned about G-code and how we can use it to control a 3D printer. Using Pronterface, we were able to control our printer through the interface as well as through executing G-code.

 We were also able to create our own bed-leveling program by writing our own G-code, automating the tedious process of moving the print head around the bed.

 Then, we looked at slicer programs, getting hands-on experience with ideaMaker and Cura, two enormously powerful and popular slicer programs. We finished off the chapter by taking a brief look at a couple of liquid resin slicer programs.

 In the next chapter, we will take what we have learned so far and start 3D-printing physical objects.

 Chapter 3

 : Printing Our First Object

 Now that we have learned a little bit about
 three-dimensional
 (
 3D
) printers and slicers, it's time to print our first object. In this chapter, we get hands-on experience with 3D printing. The goal of this chapter is for us to find an object, slice it, and 3D print it. The knowledge gained from this chapter will help us greatly in bringing our 3D designs to life.

 Before we can print, however, we need an object to print. We also need to prepare our 3D printer and slice the object into
 geometric code
 (
 G-code
).

 In this chapter, we will cover the following topics:

 	Finding objects to print

 	Preparing our 3D printer

 	Slicing our object

 	Printing our object

 Technical requirements

 The following resources will be required to complete the chapter:

 	
 3D printer—any modern
 fused deposition modeling
 (
 FDM
) printer should work; however, the Creality Ender 3 V2 will be used as an example.

 	A computer with Cura installed.

 	
 The images for this chapter may be found here:
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter3
 .

 Finding objects to print

 Printing objects that

 are of no use to anyone else but us is the ultimate use of a 3D printer. For most of us, it hardly seems worth it to spend hours printing something such as an inexpensive hook for our coat that we could just buy at a store. The exception would be for remote outposts where getting such common items is a challenge.

 3D Printing in Space

 A 3D printer made by an American company
 Made In Space
 was

 first used aboard

 the
 International Space Station
 (
 ISS
) in 2014 to print a ratchet. The 3D printer, named
 Additive Manufacturing Facility
 (
 AMF
), has

 a build volume of 14 cm by 10 cm by 10 cm. Designed to print common filament materials such as
 Acrylonitrile Butadiene Styrene
 (
 ABS
), the

 goal of the company is to have the printer use materials made from moon dust and Martian soil.

 In this section, we will explore the various avenues where we can find objects to print. We will start with a look at 3D file formats.

 Understanding 3D object file formats

 To

 3D print a file from our computer we need the file to contain 3D information such as

 geometry, texture, and color. There are many 3D object file formats; however, only a select number can be used for 3D printing.

 The following are file formats we can use to 3D print with.

 Stereolithography (STL)

 Stereolithography
 (
 STL
) files

 trace their origins to the 1980s when the format was

 used for 3D printers developed by the

 company
 3D Systems
 . STL files encode the surface of an object using a triangular mesh. Using more triangles in the mesh makes for higher-resolution parts but larger file sizes. STL files can be difficult to modify but may be imported into programs such as Blender, Fusion 360, and OpenSCAD for use with other shapes. For example, we can import an STL file of a Raspberry Pi into our
 computer-aided design
 (
 CAD
) program to

 use as a model for making a Raspberry Pi case.

 STL files may be viewed prior to printing so that we can confirm the object is what we want to print. In Windows, we can use the
 3D Viewer
 program to view our STL files. Holding down the left mouse button in 3D

 Viewer allows us to use our mouse to orbit in all directions around our object. Holding down the right mouse button gives us pan control. 3D Viewer comes pre-installed in the latest version of Windows.

 In the following

 screenshot from 3D Viewer, we can see an STL file

 representing a

 model rocket nose cone:

 [image: Figure 3.1 – Model rocket nose cone STL file

]

 Figure 3.1 – Model rocket nose cone STL file

 This nose cone was designed in OpenSCAD and exported with the
 .stl
 file format used for STL files.

 STL files

 contain only the geometry information of

 a 3D object. Thus, the attributes we mentioned—such as textures or color—are not represented in the file. Despite this limitation, STL files continue to be the most popular file format for 3D printing.

 With macOS, we can view STL files using the built-in program,
 Preview
 .

 OBJ (Wavefront)

 The
 OBJ
 file format

 was developed by the company
 Wavefront Technologies
 and its

 files are

 sometimes referred

 to as
 Wavefront Objects
 . OBJ files differ from STL files in that they store colors and textures, making OBJ files more complex than STL files.

 By supporting color, OBJ files

 stand to gain in popularity when multi-color 3D printers become more commonplace.

 SCAD (OpenSCAD)

 The
 Solid CAD
 (
 SCAD
) (
 .scad
) file format is native to the OpenSCAD CAD program. SCAD files are

 text-based code formatted files. We will start our exploration of

 OpenSCAD and SCAD files in

 Chapter 4

 ,
 Getting Started with OpenSCAD
 .

 Although not thought of as a file format in which to 3D print objects, we can import SCAD files directly into Cura by utilizing

 the
 OpenSCAD integration
 plugin from the Cura Marketplace. Using this plugin simplifies our workflow as we no longer need to create an STL file from our OpenSCAD design to import into our slicer.

 This will make more sense as we progress through designing and printing our own objects.

 Other file formats

 STL, OBJ, and SCAD files are by no means the only file formats we 3D print from. Here are some other file formats worth mentioning:

 	
 3D Manufacturing Format (3MF)
 —With STL files limited to geometry, there is a push for a standard

 offering more data. 3MF

 is an answer to the limitations of STL files. Backed by software industry heavyweight Microsoft, 3MF aims to create a seamless 3D printer workflow by offering 3D texture information, thumbnail images, and color, along with geometry data.

 	
 Additive Manufacturing Format (AMF)
 —Competing with 3MF is the AMF format, which

 was

 initially dubbed as STL 2.0. Along with geometry data, AMF files contain information for texture, color, and metadata (name, author, company).

 	
 Image files
 (.
 png
 ,
 .bmp
 ,
 .jpg
)—Common image formats such as
 .png
 ,
 .jpg
 , and
 .bmp
 are not 3D

 object files but

 may be

 loaded into our slicer programs to create a raised picture 3D print. Cura and

 ideaMaker

 can both do this.

 Now that we have an understanding of the file types we use for 3D printing, let's turn our attention to where we can find objects to print.

 Downloading 3D objects

 Before we spend time

 designing an object we need, it is a good practice to see if that object has already been designed and is available to be downloaded. An example of where we might want to do this is for upgrades to our 3D printer. For popular printers, such as the Ender 3 V2, there are many downloadable upgrades available.

 Detailed next are resources where we can find 3D printable objects.

 Thingiverse

 Thingiverse (
 www.thingiverse.com
) was started

 in 2008 as a resource for

 user-uploaded 3D

 designs by
 MakerBot Industries
 . Since

 then, it has exploded in popularity, with over 2 million 3D models uploaded as of this writing.

 Thingiverse offers 3D models in various formats such as STL, OBJ, and SCAD. Many functional parts can be found on Thingiverse, and there is an option to tip the designer. An analytics dashboard is available for uploaders to view statistics as illustrated in the following screenshot:

 [image: Figure 3.2 – Analytics dashboard in Thingiverse

]

 Figure 3.2 – Analytics dashboard in Thingiverse

 Being as popular as it is, Thingiverse has become the de facto repository for the maker community. Manufacturers can use Thingiverse designs as inspiration for product improvements. An example of this is the Thingiverse tool drawer upgrade for the Ender 3 that found its way onto the Ender 3 V2.

 YouMagine

 Associated with 3D printer

 manufacturer
 Ultimaker
 ,
 YouMagine
 (
 www.youmagine.com
) aims to

 be a platform for open source creation. YouMagine enforces

 a strict takedown policy of infringement of original designs. The top menu on the YouMagine website features
 Designs
 ,
 Collections
 , and
 Blog
 tabs.

 Under the
 Designs
 tab, we can browse through thousands of open source models for download. A category filter defaults to
 All Categories
 , but by clicking on the down arrow, the filter exposes many categories to choose from. At the time of writing, a
 COVID19
 category exists with
 154
 designs. These designs consist of various
 personal protective equipment
 (
 PPE
) models

 to be 3D printed and used in the fight against COVID-19.

 Makers to the Rescue

 As impressive as the global supply chain is, there are times when it is too big or too slow to meet immediate local demand, such as when turnaround times from design to production must be measured in days or even hours, as with the shortage of PPE during the COVID-19 pandemic. In the early days of the pandemic when PPE was in short supply, the maker community mobilized rapidly to 3D print PPE for workers on the front line.

 The
 Collections
 tab organizes 3D designs into collections, and the
 Blog
 tab provides a link to informative articles on 3D printing and the YouMagine environment itself.

 GrabCAD

 GrabCAD
 (
 www.grabcad.com
) is an online community of designers, engineers, hobbyists, and educators

 sharing CAD designs and 3D models. GrabCAD was founded

 in 2009 in Estonia but has since moved to the
 United States
 (
 US
).

 Using the library in GrabCAD, we can download CAD design files that can be edited to suit our needs. GrabCAD is geared more toward CAD design than 3D printing, as many models would require a
 computer numerical control
 (
 CNC
) machine

 over a 3D printer.

 Now that we know of a few resources to acquire 3D models to print, let's turn our attention to downloading test models for calibration.

 Calibration objects for our 3D printer

 Ensuring that our

 printer is calibrated correctly is an important step for creating high-quality 3D prints. This is especially important when making functional parts that must fit with other parts. To calibrate our 3D printer, we print out a model with defined measurements in its design and then physically check those measurements with calipers. We can see three such calibration models in the following image:

 [image: Figure 3.3 – Calibration models

]

 Figure 3.3 – Calibration models

 From left to right are the XYZ 20mm Calibration Cube, Cali Cat, and the #3DBenchy. All three calibration models can be found on Thingiverse.

 Let's take a deeper look at each model.

 The Calibration Cube

 The Calibration Cube

 can be found

 on Thingiverse here:
 https://www.thingiverse.com/thing:1278865
 . As we can see in
 Figure 3.3
 , the Calibration Cube is a simple XYZ cube. When printed, the Calibration Cube is measured along each axis, as shown in the following image. In this example, we see that the measurements are close:

 [image: Figure 3.4 – Calibration Cube measurement results

]

 Figure 3.4 – Calibration Cube measurement results

 Please note that the
 z
 axis is where variations in print results would be most noticeable. This is due to how close to the bed we set the print head prior to a print job.

 The Calibration Cube prints relatively quickly due to its small size. Having the axes marked on the cube makes it easy for us to determine which one needs adjustment.

 Cali Cat – The Calibration Cat

 For a more interesting calibration model than the Calibration Cube, there is the
 Cali Cat
 . The Cali Cat

 measures 35 mm in the
 z
 direction or from the top of its ears to the bottom.

 The head is 20 mm in the
 x
 direction and 20 mm in the
 y
 direction. The tail extends from the body at exactly 45 degrees.

 An illustration of the Cali Cat is provided in the following image:

 [image: Figure 3.5 – Measuring z height on the Cali Cat

]

 Figure 3.5 – Measuring z height on the Cali Cat

 The Cali Cat can be

 downloaded from Thingiverse here:

 https://www.thingiverse.com/thing:1545913

 The #3DBenchy

 Anyone who has spent some time looking at 3D printer videos on YouTube has no doubt come

 across the
 #3DBenchy
 . Disguised as a cartoonish tug boat, the #3DBenchy is a torture test for our 3D printer and slicer settings. We will be using the #3DBenchy in the remaining sections of this chapter to test our slicer settings.

 The #3DBenchy can also be used to calibrate our 3D printer, as there are set dimensional properties throughout the model. In the following image, we can see the measurement of the bridge roof length. Our value of
 22.92
 mm is just shy of the designed value of 23 mm:

 [image: Figure 3.6 – Measuring bridge roof length on the #3DBenchy

]

 Figure 3.6 – Measuring bridge roof length on the #3DBenchy

 The #3DBenchy can be

 found on Thingiverse here:
 https://www.thingiverse.com/thing:763622
 . There is also a dedicated website located at
 http://www.3dbenchy.com
 . The website includes an extensive analysis section of measurements designed in the model.

 Now that we have an idea of where we can find 3D objects to print, including calibration models, let's now prepare our printer and print jobs and start 3D printing.

 Preparing our 3D printer

 It's time to get our printer

 ready and start printing. For the remainder of this chapter, we will focus on printing out the #3DBenchy model. We will first prepare our printer before slicing our model into G-code. We will be using
 polylactic acid
 (
 PLA
) to

 print our model.

 The following steps will outline using the Ender 3 V2; however, these steps can be used with other modern 3D printers.

 We will start off by leveling our bed. Using the G-code we wrote in

 Chapter 2

 ,
 What Are Slicer Programs?
 , run the bed-leveling program and proceed as follows:

 	
 Before we install the filament, it's a good idea to place the print head above the print bed so that we can verify that the filament has been loaded correctly. To do this, click on
 Prepare
 |
 Move
 |
 Move Z
 and set the value to
 20
 .

 	
 We will now load our PLA filament into our 3D printer. To do this, we have to raise the temperature of the nozzle. Using the control knob on the control panel, navigate to
 Control
 |
 Temperature
 |
 Nozzle
 (or
 Hotend
 if the firmware has been updated).

 	
 Set the temperature to
 200
 °C and click the control knob to accept.

 	Observe that the temperature starts rising.

 	At the back of the printer at the extruder motor, lift off the blue dial and unscrew the filament tube coupler.

 	Slide the PLA into the hole at the side and through the extruder motor. We may have to press the extruder motor lever to get the filament through, as illustrated in the following picture:

 [image: Figure 3.7 – Loading filament into the extruder

]

 Figure 3.7 – Loading filament into the extruder

 	
 It may take a

 few tries to thread the filament. Once it is through, screw the filament tube coupler back onto the extruder motor assembly and put the blue dial back in place.

 	
 Once the nozzle temperature reaches
 200
 °C, we can start to push the filament through the filament tube. Turn the blue dial counterclockwise to move the filament through the tube. Keep going until the filament starts to extrude out of the nozzle, as illustrated in the following picture:

 [image: Figure 3.8 – Filament extruding through the nozzle

]

 Figure 3.8 – Filament extruding through the nozzle

 	
 To avoid the

 possibility of a filament jam before we need to print, we should bring the nozzle temperature back down. Using the display panel, click on
 Prepare
 |
 Cooldown
 or use
 Control
 |
 Temperature
 |
 Nozzle
 and set the temperature to
 0
 .

 Our printer is ready to print, and we are now ready to create a print job using a slicer program.

 Slicing our object

 We will slice

 the #3DBenchy model using Cura. In the process, we will get to know some of the more common settings in Cura. If you haven't already done so, refer to the
 Finding objects to print
 section of this chapter, and the
 Common FDM slicer programs
 section of

 Chapter 2

 ,
 What Are Slicer Programs?
 to download the #3DBenchy and install Cura, respectively.

 With Cura installed, let's dive into the settings.

 Setting up the profile

 To slice an

 object for our printer, Cura needs to know which 3D printer we are using. We configure this either when first installing Cura or later using the
 Add Printer
 button. We will be going through the steps to add a printer to an existing Cura installation. To do this, we proceed as follows:

 	
 To access the
 Add Printer
 dialog, click on
 Settings
 |
 Printer
 |
 Add Printer...
 from the main menu, which will take you to the following screen:

 [image: Figure 3.9 – Setting up a 3D printer in Cura

]

 Figure 3.9 – Setting up a 3D printer in Cura

 	
 Select
 Add a non-networked printer
 and then
 Creality Ender Pro
 under the
 Creality3D
 heading. Change the
 Printer name
 setting to
 Creality Ender-3 V2
 .

 	
 Click on the
 Add
 button.

 	
 Click on
 Next
 again to select the default settings.

 	
 Observe in

 the following screenshot that our printer is now set up with a
 Generic PLA 0.4mm Nozzle
 profile:

 [image: Figure 3.10 – 3D printer profile in Cura

]

 Figure 3.10 – 3D printer profile in Cura

 We will be using the
 Generic PLA 0.4mm Nozzle
 profile as a starting point and will modify a few settings to create our own material profile.

 Now that we have our printer set up in Cura, let's load our model and start to configure the slicing options.

 Loading our model

 We will use

 the #3DBenchy model, as described in the
 Finding objects to print
 section. To load our model, we do the following:

 	
 From the main menu, click on
 File
 |
 Open File(s)...
 .

 	
 Locate the
 3DBenchy.stl
 file and click on
 Open
 .

 	Observe that the #3DBenchy model is loaded onto the middle of the build plate in Cura.

 Before we can change any slicer settings in Cura, we must have access to all of them. From the main menu, click on
 Settings
 |
 Configure setting visibility
 .

 	
 Click on the
 Check all
 box under the
 Setting Visibility
 heading.

 Now that we have prepared our printer and loaded our model, let's start changing some settings in Cura.

 Quality settings

 Settings

 made in the
 Quality
 section are among the most important settings in determining the success or failure of our 3D prints. To access the
 Quality
 settings, click on the section just below the
 Marketplace
 button and then on the side arrow to open it up so that your screen now looks like this:

 [image: Figure 3.11 – Cura Quality settings

]

 Figure 3.11 – Cura Quality settings

 We will now look at and

 change some of the
 Quality
 settings, as follows:

 	
 Layer Height
 —Layer height is the distance that the
 z
 axis travels for each layer. Lower values result in better quality but longer print times. For good measure, the layer height should not be more than 80% of the nozzle diameter—ideally, around 50% for maximum layer adhesion. Type in
 0.2
 for the
 Layer Height
 setting.
 Ender 3 Magic Number

 Due to the
 z
 -axis lead screw and steps of the
 z
 -axis stepper motor, the Ender 3 has a "magic number". This is a number where if it is divisible by the layer height, it will produce prints with improved quality. In the case of the Ender 3, the magic number is 0.04. Thus, layer heights in increments of 0.04 (0.08 mm, 0.12 mm, 0.16 mm, 0.2 mm) will produce better-quality prints than other layer heights (0.1 mm, 0.13 mm). For more information on this, check out CHEP's video at
 https://www.youtube.com/watch?v=WIkT8asT90A
 .

 	
 Initial Layer Height
 —This

 setting determines the initial height of the print head off the bed. The actual height will be the value stored here plus the height set when the bed is leveled. Generally, this value is set to 0.2 mm or 0.3 mm. Some prefer 0.3 mm as it extrudes more material onto the build plate, while others prefer 0.2 mm as it sticks to the bed better. Type in
 0.2
 for the
 Initial Layer Height
 value.

 	
 Line Width
 —This sets the width of the line produced from the nozzle. Generally, this value is the same as the nozzle diameter but can be adjusted if it appears our extruder is underextruding or overextruding. If this is the case with the extruder, then other parameters should be looked at first (such as steps per mm for the extruder) before setting
 Line Width
 to anything but the nozzle diameter. As our nozzle has a 0.4 mm hole diameter, set all
 Line Width
 values to
 0.4
 .

 Now, let's take a look at the
 Infill
 settings.

 Infill settings

 One of the

 more fascinating aspects of FDM 3D printing is the ability to change how dense an object is by setting the infill percentage. For example, suppose we were making wings for a model aircraft. Using a more traditional method such as injection molding, we would probably make the part a solid part.

 In the following screenshot, we can see a cross-section of the wing (an airfoil) for our model plane as an injection-molded solid part (left) and as a 3D-printed part with a 20% infill (right):

 [image: Figure 3.12 – Solid airfoil versus one with 20% infill

]

 Figure 3.12 – Solid airfoil versus one with 20% infill

 With a solid part, more

 material is used, and thus the wing is heavier. Using a 20% infill we may be able to achieve the necessary rigidity and not only save on material but make the wing lighter.

 We will look at two values in the
 Infill
 settings—
 Infill Density
 and
 Infill Line Multiplier
 . To adjust these values, we do the following:

 	
 Click on the side arrow in the
 Infill
 row to view the
 Infill
 settings.

 	
 In the
 Infill Density
 box, put in the value
 20
 .

 The
 Infill Line Multiplier
 setting increases the number of lines the slicer uses when creating an infill. Increasing the
 Infill Line Multiplier
 value allows us to reduce the amount of infill to save on filament and keep the strength of a higher infill percentage. In the following screenshot, we can see the difference between an
 Infill Line Multiplier
 setting of 1 versus 2:

 [image: Figure 3.13 – Infill Line Multiplier from Cura

]

 Figure 3.13 – Infill Line Multiplier from Cura

 For our

 example, we will set the
 Infill Line Multiplier
 value to
 2
 . Put a value of
 2
 into the
 Infill Line Multiplier
 box.

 There is a balance between decreasing the
 Infill Density
 value and increasing the
 Infill Line Multiplier
 value to reduce filament usage. Ideally, we would like to maintain the strength of using a higher
 Infill Density
 value.

 Now that we have looked at the
 Infill
 settings, let's move on to temperature.

 Temperature settings

 It may be

 confusing that there is no temperature settings section in the Cura slicer. Instead, temperature has been placed under the
 Material
 settings section. Temperature is one of the most important settings to get right. It is also a setting that can be changed during the print job.

 Why Change the Temperature During a Print Job?

 Ideally, we will set the temperature correctly in the slicer and not have to worry about it. However, there are times when we need to adjust the temperature during a print. For example, we might hear a clicking sound coming from the nozzle if the nozzle temperature is not high enough to allow the filament to flow through at the set rate. Raising the temperature a few degrees may be all we need to do to fix such an issue. As well, we might notice that the filament is giving the part a melted look (
 see Figure 3.15
). This may be caused by printing a smaller object than the one used when the profile was set up. Lowering the nozzle temperature should fix this issue.

 To set the nozzle

 temperature for our example print, we do the following:

 	
 Click on the side arrow in the
 Material
 row to view the
 Material
 settings.

 	
 For
 Printing Temperature
 and
 Final Printing Temperature
 , enter the value
 200
 .

 	
 The
 Printing Temperature Initial Layer
 setting is used to set the nozzle temperature for the first layer of our print job. Setting a higher temperature than the
 Printing Temperature
 value helps in adhesion for the first layer. Enter
 205
 for this value.

 	
 Initial Printing Temperature
 is the value where the print job will start. Having this value lower than the
 Printing Temperature Initial Layer
 value allows us to kick off the print job before the
 Printing Temperature Initial Layer
 value has been reached. This is useful in situations where we want our print job to start earlier as it is taking too long for the printer to reach the
 Initial Printing Temperature
 value. We should not have this issue with the Ender 3 V2. Set this value to the same as for
 Initial Printing Temperature
 —
 205
 .

 Now that we have the nozzle temperature set, it's time to set the bed temperature. For certain materials such as ABS, having a high bed temperature is necessary to ensure that the filament sticks to the bed. PLA is far more forgiving in this respect.

 It is possible to print PLA to a non-heated bed, and in fact, many of the early 3D printers did not come with heated beds. For our example, we want to take advantage of the stickiness of PLA when it is applied to a heated bed.

 To set the

 bed temperature for our print, we do the following:

 	
 For
 Build Plate Temperature
 , put in a value of
 60
 .

 	
 Build Plate Temperature
 allows us to set a different build temperature for the first layer. When using a higher temperature than the
 Build Plate Temperature Initial Layer
 value, this helps in creating adhesion to the bed. We will set this to the same value as for
 Build Plate Temperature
 . Put

 in a value of
 60
 for
 Build Plate Temperature Initial Layer
 .

 Now that we have the nozzle and bed temperatures set, let's look at the cooling settings for the print job.

 Cooling settings

 On the right side of

 the Ender 3 V2 extruder is the
 part cooling fan
 (
 Figure 1.5
 from

 Chapter 1

 , Getting Started With 3D Printing
). The aptly named part cools the filament after it has been extruded. The strength of the fan—and thus its cooling effect—is adjustable. In the following screenshot, we see how the cooling fan works. As the filament settles on to the layer, the fan cools the layer:

 [image: Figure 3.14 – Part cooling

]

 Figure 3.14 – Part cooling

 For some filaments such as ABS, part cooling (especially excessive part cooling) works against layer adhesion and is generally not used very much. PLA, on the other hand, requires part cooling, with quality suffering without it. We can see an extreme case of not cooling down a PLA

 part in the following picture:

 [image: Figure 3.15 – PLA part without part cooling

]

 Figure 3.15 – PLA part without part cooling

 It is a good idea to limit part cooling on the first few layers as it affects bed adhesion. For our example, we will limit part cooling for the first four layers. To do this, proceed as follows:

 	
 Click on the side arrow in the
 Cooling
 row to view the
 Cooling
 settings.

 	
 Click on the
 Enable Print Cooling
 checkbox if it is not already checked.

 	
 For
 Fan Speed
 , put in the value
 100
 .

 	
 For
 Initial Fan Speed
 , put in the value
 0
 .

 	
 For
 Regular Fan Speed at Layer
 , put in the value
 4
 .

 What we have

 done is limited part cooling for the first four layers, turning it off completely for the first layer. This, along with the higher initial nozzle temperature, will assist in having the filament stick to the bed for the first layer. The cooling effect from the part cooling fan will increase every layer and will be at 100% at layer four.

 Let's move on to the last setting we will modify—the adhesion to the build plate.

 Build Plate Adhesion settings

 The
 Build Plate Adhesion
 settings

 determine how our object adheres to the build plate. With 3D printing, getting the first layer to stick to the build plate is the most important step in the whole process.

 There are four different settings for
 Build Plate Adhesion Type
 :
 None
 ,
 Brim
 ,
 Skirt
 , and
 Raft
 , as illustrated in the following screenshot:

 [image: Figure 3.16 – Build Plate Adhesion types in Cura

]

 Figure 3.16 – Build Plate Adhesion types in Cura

 Let's take a look at each type now.

 None

 By setting

 the
 Build Adhesion Plate Type
 to
 None
 , our print head will immediately start printing our object once the cleaning function has run. This value is desirable in situations where space is tight, as the other three adhesion types require extra space on the build plate.

 Nozzle Cleaning Function

 A nozzle cleaning job

 is run just before every print job. This is made up of pre-written G-code that our slicer inserts into our G-code file. For our Ender 3 V2, there are lines extruded on the left side from the front to the back and from the back to the front. This extrusion helps clean out the nozzle before the object is printed and happens at the beginning of each print job.

 Brim

 Brim
 takes its name

 from the brim of a hat. It adds width to the base of our print on the first layer and can be easily removed after the print job is done. Brims are especially useful for prints that have wide bases and help to protect against the bottom edges of our print curling up.

 Skirt

 Skirt
 is probably

 the most popular
 Build Plate Adhesion Type
 . It basically adds extra lines to the nozzle cleaning function around the print and allows us to level the bed in real time before our object is printed. We do use a skirt for our example print in the upcoming section,
 Printing our object
 .

 Raft

 Before the widespread

 use of glass beds, the best way to ensure a flat build surface was to have it made at the time of printing. A raft made up of a few layers of filament provides excellent adhesion for our objects as the objects are printed on top of the very same material they are made of. The
 Raft Air Gap
 setting determines how easily the raft can be removed from our print after the print job has finished. The right combination of nozzle, bed temperature, and raft air gap may take some experimentation to get it right. As useful as they are, rafts have fallen out of favor due to the extra filament and print time they require.

 For our example, we will use the
 Skirt
 adhesion type. To do this, we proceed as follows:

 	
 Click on the side arrow in the
 Build Plate Adhesion
 row to view the
 Build Plate Adhesion
 settings.

 	
 Select
 Skirt
 from the
 Build Plate Adhesion Type
 drop-down menu.

 	
 Adding extra lines to a skirt gives us more time to live adjust our print bed. For
 Skirt Line Count
 , put in the value
 10
 .

 	
 We will leave the other settings at their default values. As this is the last setting, we will modify it as it's time to save our profile. From the
 Profile
 drop-down box at the top, select the down arrow.

 	
 Select
 Create profile from current settings/overrides…
 .

 	
 Type in a

 name in the
 Create Profile
 dialog box.

 	
 Click
 OK
 to save.

 	
 Click
 Close
 to close the
 Preferences
 box.

 With the settings done, it's now time to slice our object.

 Slicing our object

 To slice our

 object and create and save the G-code, we need to do the following:

 	Insert a microSD card into the computer using an appropriate adapter.

 	
 In Cura, click on the blue
 Slice
 button on the bottom right-hand side.

 	
 Click on the
 Save to Removable Drive
 button.

 	Eject the microSD card using the appropriate operating system function or the dialog popup in Cura.

 Now that we have learned a bit about slicer settings, the time has come to bear the fruit of all our efforts up to this point and print out our object.

 Printing our object

 With our print bed

 leveled, filament loaded, and object sliced, it's now time to run our print job. For our example, we will be using the standard glass bed that comes with the Ender 3 V2.

 Applying a glue stick to the bed

 Although

 we could probably print directly to the glass bed, it is a good idea to apply a glue stick to assist in first-layer adhesion.

 Applying a glue stick in one direction followed by the other, then waiting a few minutes between the first and second application will help create a sticky surface for our PLA, as illustrated in the following picture:

 [image: Figure 3.17 – Applying a glue stick to our print bed

]

 Figure 3.17 – Applying a glue stick to our print bed

 Now that our

 print bed is ready, let's start the print job.

 Running our print job

 We run the print job from

 the microSD card. While observing the printing of the skirt, we can determine any action that needs to be taken to level the bed further. To do this, we proceed as follows:

 	Load the microSD card into the 3D printer. For our Ender 3 V2, the slot is located on the front left side.

 	
 Click on
 Print
 , scroll to the
 3DBenchy
 file, and click to select. Observe that the print job starts.

 	
 As we have set the
 Skirt Line Count
 value to 10, we have some time for adjustments. If the skirt is not sticking to the bed at all, we adjust the
 z
 offset. To do this, click on
 Tune
 , scroll down to
 Z-Offset
 , click and enter a negative value (
 -0.2
 , for example), and then click again to accept.

 	If it appears that only one side is not sticking, then the bed needs adjustment. Gently adjusting the appropriate leveling wheel should fix the issue. We must be careful when doing this as the bed is hot and we do not want to stop the bed from moving, as it will cause a shift in our print.

 Ideally, our skirt will stick evenly to the bed, as shown in the following image:

 [image: Figure 3.18 – Skirt sticking to the bed

]

 Figure 3.18 – Skirt sticking to the bed

 By adjusting

 the
 z
 offset or adjusting our bed, we run the risk of negatively affecting the accuracy of the
 z
 height of our object. If the
 z
 height is important for our print, then we could consider adjusting the
 z
 height in the slicer to compensate by using scaling or by choosing a raft for our
 Build Plate Adhesion Type
 .

 Adjusting Z Size in Cura

 In Cura, looking at the buttons on the left-hand side, the second from the top is
 Scale
 . This is used to resize objects. By turning off
 Uniform Scaling
 , we can adjust the
 z
 height of our objects prior to slicing to allow for any inaccuracies.

 After our print is done, we can inspect our object for printer accuracy and print settings. The correct dimensions for the #3DBenchy are well documented here:
 http://www.3dbenchy.com/dimensions/
 .

 Calibrating our printer

 If the measured values from

 our printed #3DBenchy are significantly off, then we need to adjust the
 steps per mm
 value for the affected axis. For the Ender 3 V2, we can access this value from
 Control
 |
 Motion
 |
 Steps/mm
 .

 To correct the affected axis, calculate and put in a new value for steps per mm by using the following formula:

 NewStepsPerMM = (CorrectValue * CurrentStepsPerMM) / MeasuredValue)

 For example, in
 Figure 3.6
 , we can see a measured #3DBenchy Bridge roof length of 22.92 mm. This measurement represents the
 x
 axis. To calculate
 NewStepsPerMM
 for
 x
 , use the following formula:

 NewStepsPerMM = (23 * 80) / 22.92)= 80.28

 The
 CurrentStepsPerMM
 defaults to 80 on the Ender 3 V2. As we can see, the new value is very close to the existing steps per mm value.

 Inspecting #3DBenchy for print quality

 The humble #3DBenchy offers

 us quite a lot of insight into the accuracy

 of our slicer settings. For our purposes, we will look at the bottom of our print and determine what we need to do to achieve a great first layer.

 Detailed #3DBenchy Analysis

 For an excellent analysis on the #3DBenchy and how it ties in with slicer settings, check out YouTuber Michael Law's video:

 https://www.youtube.com/watch?v=t_7EMnQ6Rlc

 In the following picture, we can see two separate #3DBenchy prints:

 [image: Figure 3.19 – #3DBenchy first layer test

]

 Figure 3.19 – #3DBenchy first layer test

 On the black

 print on the left, we can clearly see the test text. This

 indicates that our first layer was successful. For the gold print on the right, the test text is washed out, indicating that our print head was too close to the bed. It could also mean that the bed or nozzle temperature was too high.

 As already stated, getting the first layer right in a 3D print job is the most challenging part of 3D printing as the rest of the print job relies on it. Tweaking slicer settings and build plate surfaces goes a long way toward getting great first layers.

 We have now learned how to print and inspect an object.

 Summary

 We started this chapter by looking at 3D object types such as STL and OBJ. We then investigated where we could find objects to print. With the incredible amount of 3D designs available, it serves us well to know where to find designs that suit our needs before venturing into creating our own.

 We then looked at some common slicer settings and modified them. Using a default slicing profile to work from saves us from having to learn all the settings available. We explored layer heights, infill settings, and temperature and cooling settings as these are some of the more important settings to understand to create high-quality 3D prints.

 Using the standard Creality Ender 3 V2 glass build plate, we printed a #3DBenchy test print and did some analysis on it to determine the accuracy of our first layer, by far the most important layer for a successful 3D print.

 In the next chapter, we will start learning OpenSCAD as we shift the focus to designing our own objects.

 Part 2: Learning OpenSCAD

 Although 3D printing objects designed by others is certainly worthwhile, having the ability to create your own 3D designs expands what you can do greatly. Physical objects do not need to stay in your imagination when you are armed with the tools of 3D design. OpenSCAD is a free, open source 3D design platform designed with the programmer in mind. In this part, we will explore OpenSCAD. We will start off designing with simple shapes and work our way to more complex designs.

 In this part, we cover the following chapters:

 	

 Chapter 4

 ,
 Getting Started with OpenSCAD

 	

 Chapter 5

 ,
 Using Advanced Operations of OpenSCAD

 	

 Chapter 6

 ,
 Exploring Common OpenSCAD Libraries

 Chapter 4

 : Getting Started with OpenSCAD

 Although 3D printing objects designed by others is certainly worthwhile, having the ability to create our own 3D designs expands what we can do greatly with our 3D printer. Physical objects do not need to stay in our imagination when we are armed with the tools of 3D design.

 OpenSCAD is a free, open source 3D design platform designed with the programmer in mind. While having prior programming knowledge is an asset in learning OpenSCAD, it certainly is not a requirement.

 We will start off designing with simple shapes and work our way to more complex designs. We will use our knowledge to create a customized hook for a PVC pipe.

 Important Note

 Our examples will become increasingly more difficult in this chapter. Care must be taken that the correct code is entered to avoid syntax errors that may require a significant time to fix.

 In this chapter, we will cover the following topics:

 	Introducing OpenSCAD

 	Exploring other CAD programs

 	Learning OpenSCAD GUI and basic commands

 	Learning OpenSCAD Boolean and transformation operations

 Technical requirements

 The following will be required to complete the chapter:

 	Any late model Windows, macOS, or Linux computer that can install OpenSCAD.

 	
 The code and images for this chapter may be found here:
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter4
 .

 Introducing OpenSCAD

 OpenSCAD is

 often referred to as a programmer's 3D design tool. Unlike many CAD environments out there, OpenSCAD designs are created by writing C-like code in an editor. Shapes created by commands may be added and subtracted from one another to create new objects. Re-usable functions and libraries may be easily written.

 As an example, in
 Figure 4.1
 , the code
 cube([10,10,10], center=true);
 creates the

 cube we see on the right:

 [image: Figure 4.1 – Cube made in OpenSCAD

]

 Figure 4.1 – Cube made in OpenSCAD

 Objects for use in the real world may be easily designed using OpenSCAD code and exported to be printed on a 3D printer.
 Figure 4.2
 shows a console tray for a 2012 Toyota Prius designed in OpenSCAD. This design was created using only a few lines of code:

 [image: Figure 4.2 – Console tray for a 2012 Toyota Prius

]

 Figure 4.2 – Console tray for a 2012 Toyota Prius

 By virtue

 of being a programming environment, OpenSCAD is highly parameterizable. Parts created may be scaled or modified easily by changing parameters. This is demonstrated in
 Figure 4.3
 .

 We can see two PVC pipe hooks. These

 hooks are designed to screw into a PVC pipe and used for hanging such things as tools or jackets. The hook on the left is designed for a PVC pipe that has a diameter of 42.5 mm, and the hook on the right is designed for a PVC pipe with a diameter of 32.5 mm, as shown here:

 [image: Figure 4.3 – Hooks for different size poles

]

 Figure 4.3 – Hooks for different size poles

 The
 Diameter
 value is

 stored as a number in the program and is quite easily modified to suit the diameter of the PVC pipe used.

 PVC Pipe and 3D Designs

 When designing parts that require long cylinder shapes, it is a good idea to incorporate PVC pipes in the design. PVC pipes

 are relatively inexpensive and are much stronger than a vertically printed 3D cylinder.

 Being a programming environment, there are outside libraries that may be used to help simplify the design. To generate the M3 15-mm bolt shown in
 Figure 4.4
 , we use the
 BOSL
 library

 available for download from the OpenSCAD website (
 http://openscad.org/libraries.html
):

 [image: Figure 4.4 – Bolt generated in OpenSCAD using the BOSL library

]

 Figure 4.4 – Bolt generated in OpenSCAD using the BOSL library

 With the

 BOSL library, the M3 15-mm bolt is generated with just one line of code.

 Now that we have a general idea of what OpenSCAD is, let's see how it stacks up against other CAD software.

 Exploring other CAD programs

 Choosing

 the right CAD software for a project can be a difficult task. The learning curve for any CAD environment is a steep one. To maximize the return on our time, we must take care to choose the right CAD software for our intended application.

 Let's look at some of the alternatives we may use.

 Fusion 360

 Fusion 360
 , by

 the

 American company AutoDesk, combines CAD, CAM, and PCB design in one package. Usage is based on a subscription model, although a free version is available for personal use. Designs in Fusion 360 generally start from a sketch. Constraints and dimensions

 applied to a sketch may be modified later in the design as Fusion 360 maintains a design history.

 In
 Figure 4.5
 , we can

 see a table for a vacuum form machine that was designed in Fusion 360:

 [image: Figure 4.5 – Table for a vacuum forming machine

]

 Figure 4.5 – Table for a vacuum forming machine

 This design was built from extruded sketches. The filet functionality used in this design gives it a distinctive look.

 What Are Filets?

 A filet is a

 rounding of an inside or outside edge in a design. Filets may be applied for mechanical reasons such as stress concentration or simply for design aesthetics.

 Fusion 360 operates as a hybrid desktop/online model with the program installed on a local computer

 and projects stored in the cloud. You may access your designs from any computer logged in to your account.

 The functionality

 of Fusion 360 is vast. 3D printing from Fusion 360 can be done by exporting a design to a 3D object file or through integration with Cura (for information on Cura, refer to

 Chapter 2

 ,
 What Are Slicer Programs?
).

 TinkerCAD

 TinkerCAD
 is

 another

 product from AutoDesk. TinkerCAD was founded in 2011 to make 3D modeling available for everyone. TinkerCAD is accessed through a web browser, with an extensive learning center available online as well.

 In
 Figure 4.6
 , we

 can see a screenshot from a TinkerCAD instance. In this example, the
 Text
 component is used to create extruded text:

 [image: Figure 4.6 – TinkerCAD example

]

 Figure 4.6 – TinkerCAD example

 External objects may be imported onto the canvas of the program. Also, our design may be 3D printed directly from the app using several cloud-based platforms. For local printing, designs may be exported and downloaded as a 3D object.

 For laser cutting, a

 bottom layer may be exported and stored as a
 .svg
 file. This can be useful in situations where a design requires a thick flat bottom plate to be cut by a laser or CNC router.

 What Is a CNC Router?

 CNC routers

 and 3D printers are similar in design as they share a flat plate area and a head that moves in the
 x
 and
 z
 directions. While 3D printers are often called additive manufacturing machines due to the way they add material to the build plate, CNC routers are referred to as subtractive manufacturing machines. The head on a CNC router cuts a block of material with a spinning router to create shapes.

 TinkerCAD designs

 may also be exported for Minecraft and Lego brick templates.

 FreeCAD

 Like

 Fusion 360,
 FreeCAD
 offers an environment to create

 objects from sketches. As an open source program, FreeCAD has many external extensions from various developers. This gives FreeCAD a bit of a disjointed feel.

 The workspaces available for FreeCAD are plentiful. In
 Figure 4.7
 , we can see one such workspace called

 the
 Rocket
 workspace. It is added through the add-on manager in FreeCAD:

 [image: Figure 4.7 – Rocket nose cone design in FreeCAD

]

 Figure 4.7 – Rocket nose cone design in FreeCAD

 With

 the
 Rocket
 workspace, the user can create model rocket parts

 for 3D printing. A lookup table with access to model rocket parts from various manufacturers is available in the workspace. For the nose cone in
 Figure 4.7
 , the nose cone generated is the BNC-20B from Estes.

 The latest version, as

 of the time of writing this book, is
 FreeCAD 0.19.3
 , indicating that FreeCAD is still very much in a beta release status. This should not dissuade any of us from trying it though as FreeCAD is feature-rich, and rivals many paid graphical CAD platforms. FreeCAD is free to download and use, and is available for Windows, macOS, and Linux.

 Comparing OpenSCAD with other CAD programs

 The

 most

 obvious difference between OpenSCAD and most CAD programs is the program-like interaction with the design. At first, this may seem like a disadvantage as it takes time to learn the commands; however, within a short time, this becomes an advantage.

 Let's clarify. For

 example, to create a 10 mm x 10 mm x 10 mm cube

 in Fusion 360, we would create a sketch, draw a 10 mm x 10 mm box, and then extrude the box in the
 z
 direction by 10 mm. To do the same in OpenSCAD, we simply type
 cube(10);
 in the editor and hit
 F5
 to see the result.

 Now that we are convinced of the power of OpenSCAD, let's take a closer look at it.

 Learning OpenSCAD GUI and basic commands

 It is time to get some hands-on experience. In this section, we will download and install OpenSCAD, look at

 the interface, and then create and view a few simple objects.

 Let's start by installing OpenSCAD.

 Downloading and Installing OpenSCAD

 OpenSCAD is

 available for Windows, macOS, and Linux. To download and install OpenSCAD, perform the following steps:

 	
 In a browser, go to
 http://openscad.org/downloads.html
 to view the downloads available for OpenSCAD.

 	
 Follow the

 steps to install OpenSCAD for the appropriate operating system. For Windows users, we have a choice to download the installer or a zip package. Choose the installer option as it will put a link to OpenSCAD in our Windows Start menu.

 Now that we have OpenSCAD installed, let's look at it in detail.

 Getting to know the OpenSCAD environment

 Let's now look at the

 OpenSCAD environment. To do so, open OpenSCAD and click on the
 New
 button. In the following screenshot, we can see what OpenSCAD looks like when it is opened with a blank design:

 [image: Figure 4.8 – OpenSCAD GUI environment

]

 Figure 4.8 – OpenSCAD GUI environment

 If the layout

 is not as shown in the preceding screenshot, then ensure that
 Hide Error Log
 and
 Hide Customizer
 are checked under the
 Window
 menu, and that
 Hide Editor
 and
 Hide Console
 are not checked under the
 Window
 menu.

 As we can see in
 Figure 4.8
 , the screen is divided into three areas –
 Editor
 ,
 Object Display
 , and
 Console
 . The only area that we may not hide is
 Object Display
 as this is the area that shows our designs. Before we take a more in-depth look at the OpenSCAD GUI, let's create our first design.

 Creating our first design

 Creating

 a simple design is extremely easy and quick in OpenSCAD. To create our first design, perform the following steps:

 	
 In
 Editor
 , type the following:

 sphere(10);

 	
 Hit
 F5
 on the computer keyboard or click on the
 Preview
 (as shown in

 Figure 4.11
) button on the top menu.

 	
 Observe

 that we see a sphere in
 Object Display
 :

 [image: Figure 4.9 – OpenSCAD sphere

]

 Figure 4.9 – OpenSCAD sphere

 	
 We have just created our first OpenSCAD design. Note how quick and easy it was. Also note how our sphere looks a little like a
 disco ball
 . To fix this, type in the following before the sphere command in the editor:

 $fn=200;

 	
 Hit the
 F5
 key on the keyboard or click on the
 Preview
 button at the top. Observe that our object is now smooth:

 [image: Figure 4.10 – Smooth OpenSCAD sphere

]

 Figure 4.10 – Smooth OpenSCAD sphere

 What Is a Disco Ball?

 Disco balls, also

 known as mirror balls, are spheres with flat mirror pieces glued to them. The disco ball is usually attached to a motor that spins it around. Spotlights are projected onto the ball, creating a series of moving light circles around the room. Although some believe disco balls are a product of the 1970s (the height of disco music), their roots can be traced back to the 1920s.

 The
 $fn
 keyword

 controls the number of fragments that are used to display our objects. Setting this to a high number (over 50) results in many fragments used at the cost of CPU memory. It is a good idea to keep this value low and increase it after the design is finalized.

 Now that we have a little hands-on experience, let's take a closer look at the user interface.

 Editor

 In
 Editor
 , we

 can see 11 icons across the top (
 Figure 4.11
). From the left to the right, we have the standard
 New File
 ,
 Open File
 ,
 Save
 ,
 Undo
 ,
 Redo
 ,
 Unindent
 , and
 Indent
 buttons (make sure
 Hide Editor toolbar
 is unchecked under the
 View
 menu, if you cannot see the icons).

 However, it

 is the four icons on the right that are of interest to us, as shown here:

 [image: Figure 4.11 – OpenSCAD Editor

]

 Figure 4.11 – OpenSCAD Editor

 Let's take a closer look at these four buttons, starting with the
 Preview
 button:

 	
 Preview
 – We use the
 Preview
 button, or
 F5
 on the keyboard, to generate a "preview" of our design.

 	
 Render
 – We use the
 Render
 button, or
 F6
 on the keyboard, to render our design for export. Rendering takes longer than preview and uses a lot more computing resources.

 	
 STL
 – We use the
 STL
 button, or
 F7
 on the keyboard, to export our design as a
 .STL
 file. Please note that this will only work for designs that have been rendered.

 	
 3D Print
 – We use the
 3D Print
 button, or
 F8
 on the keyboard, to send our print either to

 the
 Print a Thing
 online service or OctoPrint (local network service for our 3D printer) on our network.

 Now that we have a better understanding

 of the
 Editor
 pane, let's look at the area where we view our designs.

 Object Display

 We view our objects

 in the
 Object Display
 area. Across the bottom of this area, we see a row of buttons. The first two are a copy of the
 Preview
 and
 Render
 buttons from the
 Editor
 pane. The next ten buttons control how we view our object at various angles and magnifications:

 [image: Figure 4.12 – Object Display buttons

]

 Figure 4.12 – Object Display buttons

 As we can see in the
 Figure 4.12
 , there are three highlighted buttons indicating they are active. By default, our view is in
 Perspective
 mode with the
 Show Axes
 and
 Show Scale Markers
 buttons set as well. The final button allows us to view the edges of our object. In the case of our sphere, pressing this button will have no effect as the sphere does not have edges.

 Along with the button

 functionality, we may use our mouse to move around in the
 Object Display
 area:

 	
 Left mouse button
 – Holding down the left mouse button and moving the mouse allows us to rotate.

 	
 Right mouse button
 – Holding down the right mouse button and moving the mouse allows us to pan.

 	
 Middle mouse button
 – Holding down the middle mouse button (scroll wheel) and moving the mouse allows us to zoom in and out.

 	
 Scroll wheel
 – Using the scroll wheel, we may zoom in and out without having to move the mouse.

 Let's now look at
 Console
 .

 Console

 The
 Console
 area

 displays messages from OpenSCAD, such as the path of the design file on our computer. Compile errors are shown in the
 Console
 area as well.
 Console
 is the first place to look when there is an issue with a design.

 Now that we have taken a look at the GUI, let's look into some of the basic shapes that we may create inside OpenSCAD.

 OpenSCAD basic 2D shapes

 Creating

 2D shapes in OpenSCAD is relatively easy. Basic shapes, such

 as squares and circles, provide an excellent way to model real-world measurements. Using the
 linear_extrude()
 operation, we may turn 2D shapes into 3D objects.

 Some basic 2D shapes include circles, squares, polygons, and text. We will use a couple of 2D shapes in the upcoming section,
 Creating our PVC pipe hook
 .

 OpenSCAD basic 3D shapes

 Basic 3D shapes

 in OpenSCAD include spheres, cubes, and

 cylinders. By combining basic 3D shapes, we can create complex objects. This, combined with extruded 2D shapes, is at the heart of an OpenSCAD design.

 We will combine 3D objects and extrude 2D shapes in the upcoming section,
 Creating our PVC pipe hook
 .

 Learning OpenSCAD Boolean and transformation operations

 In this section, we will cover some of the basic Boolean and transformation operations. We will then use this knowledge to build a PVC pipe hook, as shown in
 Figure 4.3
 .

 Let's start with Boolean operations.

 OpenSCAD Boolean operations

 There

 are three Boolean operations in OpenSCAD. These are as follows:

 	
 union()
 – This

 operation joins shapes together. This can be used for 2D or 3D shapes (but not at the same time).

 	
 difference()
 – This

 operation subtracts the second and subsequent shapes from the first shape. This operation may also be used on 2D and 3D shapes, but not at the same time.

 	
 intersection()
 – This

 operation creates an intersection between shapes. Only the area in which the shapes overlap is retained. This may be used with 2D and 3D shapes as well, but not at the same time.

 To demonstrate how each Boolean operation works, let's use a simple sketch. To do so, perform the following steps:

 	
 Open a

 new file in OpenSCAD by clicking on
 File | New File
 .

 	
 We will join a square and a circle together using the
 union()
 operation. Type the following code in the
 Editor
 pane:
 $fn=50;

 union()

 {

 square(10, center = true);

 circle(d=11);

 }

 	
 Click on the
 Render
 button, or hit the
 F6
 key. Observe the following shape:

 [image: Figure 4.13 – Union of a square and a circle

]

 Figure 4.13 – Union of a square and a circle

 	
 Now that

 we see what
 union
 does, let's look at what
 difference
 does. In the code, change
 union()
 to
 difference()
 . Click on the
 Render
 button, or hit the
 F6
 key. Observe the following shape:

 [image: Figure 4.14 – Difference between a square and a circle

]

 Figure 4.14 – Difference between a square and a circle

 	
 As we

 can see, the
 difference()
 operation subtracted the circle from the square. Now let's see what
 intersection
 does. In the code, change
 difference()
 to
 intersection()
 . Click on the
 Render
 button, or hit the
 F6
 key. Observe the following shape:

 [image: Figure 4.15 – Intersection between a square and a circle

]

 Figure 4.15 – Intersection between a square and a circle

 As we can

 see, the intersection operation created a box-like shape with rounded edges. This shape represents the intersection or the area where both shapes overlap.

 Now that we have explored Boolean operations, let's look at a few transformation operations.

 OpenSCAD transformation operations

 OpenSCAD

 transformation operations

 allow us to move, rotate, scale, resize, and mirror our objects. The following is a list of a few OpenSCAD transformation operations:

 	
 translate([x, y, z])
 – This

 operation allows us to move an object in the
 Object Display
 area. Parameters passed are enclosed with square brackets.

 	
 rotate([x, y, z])
 – This

 operation allows us to rotate an object in the
 Object Display
 area. The parameters
 x
 ,
 y
 , and
 z
 represent the amount of rotation in their respective axes.

 	
 scale([x, y, z])
 – This

 operation allows us to scale an object in the
 x
 ,
 y
 , and
 z
 directions.

 	
 resize([x, y, z])
 – This

 operation allows us to resize an object in the
 x
 ,
 y
 , and
 z
 directions.
 Don't Forget the Square Brackets

 One mistake that is easy to make is the omission of the square brackets for the
 x
 ,
 y
 , and
 z
 parameters. The best way to think about it is to consider the
 x
 ,
 y
 , and
 z
 parameters as one value, and thus the need to group them together.

 Now that we understand some of the commands in OpenSCAD, let's use it to create an object. We will create a PVC pipe hook, as shown in
 Figure 4.3
 .

 Creating our PVC pipe hook

 Using

 what we have learned to this point, it is time to start creating our own designs. The PVC pipe hook is a simple, yet practical, object. In
 Figure 4.16
 , we can see a version of the PVC pipe hook used to hold up a transmitter for a drone:

 [image: Figure 4.16 – PVC hook used for a drone transmitter

]

 Figure 4.16 – PVC hook used for a drone transmitter

 Let's start by creating our first shape.

 Creating the first shape

 To start off, we

 will use a cylinder as a base shape and then cut out a section for the PVC pipe. To do this, perform the following steps:

 	
 In the
 Editor
 pane, type in the following code:
 $fn=100;

 cylinder(d1=90, d2=100, h=60);

 The first line sets the quality of the image we see in the
 Object Display
 area, while the second line creates a
 60
 mm tall
 cylinder
 with a bottom diameter of
 90
 mm and a top diameter of
 100
 mm.

 	
 Click on the
 Render
 button, or hit the
 F6
 key, to see the
 cylinder
 .

 	
 We will

 now cut out a hole in the center of the
 cylinder
 equal to the diameter of the PVC pipe. For our example, we will cut for a PVC pipe with a diameter of
 42.5
 mm. To do so, change the code to the following:
 $fn=100;

 difference()

 {

 cylinder(d1=90, d2=100, h=60);

 translate([0, 0, -10])

 cylinder(d=42.5, h=100);

 }

 	
 Using the
 difference()
 operation, a cylinder with the same diameter as the PVC pipe is subtracted from the middle of the first cylinder. The height set for the PVC pipe does not matter for subtraction. The
 translate()
 operation is used on the PVC pipe cylinder to move it down so that it has a negative
 z
 axis value. This provides a clean cut at the bottom of our first cylinder. The value
 -10
 is arbitrary. Click on the
 Render
 button, or hit
 F6
 on the keyboard, to see our new shape.

 	
 Observe that our cylinder now has a hole in it. We now need to cut it in half. To do this, we use a large cube. The size of the cube is irrelevant as long as it is larger than our cylinder. To do this, we change our code to the following:
 $fn=100;

 difference()

 {

 difference() {

 cylinder(d1=90, d2=100, h=60);

 translate([0, 0, -10])

 cylinder(d=42.5, h=100);

 }

 translate([-100,0,0])

 cube([200, 200, 200], center=true);

 }

 	
 What we

 have done here is nest our original
 difference()
 operation inside another
 difference()
 operation. A large cube, centered and moved
 -100
 in the
 x
 axis (to put it on one side of the
 x
 axis) is subtracted from the first shape. Click on the
 Render
 button, or hit
 F6
 on the keyboard, to see our new shape.

 [image: Figure 4.17 – PVC hook first shape

]

 Figure 4.17 – PVC hook first shape

 We can see

 our PVC pipe hook starting to resemble the hooks in
 Figure 4.3
 .

 Using the Show Only (!) Symbol in OpenSCAD

 As our

 designs become more complicated, it is easy to forget what

 a particular operation does. A technique we may use to help us isolate an operation is the Show Only command. The show only command is represented by the symbol
 !
 and can be used to isolate an operation. For example, putting it in front of our cube will display the cube used to cut the cylinder in half:
 !translate([-100,0,0])cube([200, 200, 200], center=true);
 .

 Now that we have the main body done, let's add some screw holes to the side.

 Adding screw holes

 To add

 screw holes, we subtract rotated cylinders. As our code is starting to get a little more complicated, we will comment out what we have done so far before we create the cylinders for the screw holes.

 To do this, perform the following steps:

 	Highlight all the code except for the first line.

 	
 Click on
 Edit
 |
 Comment
 , or press
 Ctrl
 +
 D
 on the keyboard. Observe that the code is commented out:
 $fn=100;

 //difference()

 //{

 // difference() {

 // cylinder(d1=90, d2=100, h=60);

 // translate([0, 0, -10])

 // cylinder(d=42.5, h=100);

 // }

 // translate([-100,0,0])

 // cube([200, 200, 200], center=true);

 //}

 	
 We will now create two cylinders to use as cutaways for our screw holes. For our model, we will put these screw holes at
 15
 and
 35
 mm from the bottom. In the
 Editor
 pane, type the following:
 translate([0,0,15])

 rotate([0,90,0])

 cylinder(d=3, h=100);

 translate([0,0,35])

 rotate([0,90,0])

 cylinder(d=3, h=100);

 	
 To

 understand OpenSCAD code, we read the statements from bottom to top. For the first statement, a
 3
 mm cylinder with a height of
 100
 mm is created, rotated
 90
 degrees along the
 y
 axis, and lifted
 15
 mm on the
 z
 axis. The second statement does the same, but lifts the cylinder
 35
 mm on the
 z
 axis. Click on the
 Render
 button, or hit
 F6
 on the keyboard, to see the cylinders.

 	
 To add a professional look to our design, let's countersink our screws. To do this, we will add additional cylinders. Add the following lines of code:
 translate([45,0,15])

 rotate([0,90,0])

 cylinder(d=10, h=50);

 translate([45,0,35])

 rotate([0,90,0])

 cylinder(d=10, h=50);

 	
 These two
 10
 mm diameter and
 50
 mm tall cylinders are rotated and placed at the same heights as the first two cylinders. The only difference is the
 x
 axis placement, which is set to
 45
 mm. This distance will create a countersink. As noted before, the height of the cylinders is irrelevant when they are used in subtraction. Click on the
 Render
 button, or hit
 F6
 on the keyboard, to see what we have so far.

 [image: Figure 4.18 – Cutaways for countersink screw holes

]

 Figure 4.18 – Cutaways for countersink screw holes

 	
 For good

 measure, we should wrap our new lines of code in a
 union()
 operation. This will make it easier to keep track of. To do this, we change our code to the following:
 union()

 {

 translate([0,0,15])

 rotate([0,90,0])

 cylinder(d=3, h=100);

 translate([0,0,35])

 rotate([0,90,0])

 cylinder(d=3, h=100);

 translate([45,0,15])

 rotate([0,90,0])

 cylinder(d=10, h=50);

 translate([45,0,35])

 rotate([0,90,0])

 cylinder(d=10, h=50);

 }

 	
 Now that

 we have our screw hole cylinders created, it is time to use them to create the screw holes. To do this, we use another
 difference()
 operation to subtract the screw hole cylinders from the first shape we created. Uncomment out the previous code and wrap it with our newer code like this:
 $fn=100;

 difference()

 {

 difference()

 {

 difference() {

 cylinder(d1=90, d2=100, h=60);

 translate([0, 0, -10])

 cylinder(d=42.5, h=100);

 }

 translate([-100,0,0])

 cube([200, 200, 200], center=true);

 }

 union() {

 translate([0,0,15])

 rotate([0,90,0])

 cylinder(d=3, h=100);

 translate([0,0,35])

 rotate([0,90,0])

 cylinder(d=3, h=100);

 translate([45,0,15])

 rotate([0,90,0])

 cylinder(d=10, h=50);

 translate([45,0,35])

 rotate([0,90,0])

 cylinder(d=10, h=50);

 }

 }

 	
 Essentially, what

 we are doing here is subtracting the screw hole cutaways from our first object. Click on the
 Render
 button, or hit
 F6
 on the keyboard, to see what we have so far:

 [image: Figure 4.19 – Screw holes with countersinks added

]

 Figure 4.19 – Screw holes with countersinks added

 We are now

 ready to add the hook part. We will create 2D shapes in OpenSCAD to accomplish this.

 Creating the hook

 To

 create the hook, we will start by combining a box and a circle. We will then extrude the shape and move it to the top of the cylinder. To do this, perform the following steps:

 	
 Comment out all of the code so far by selecting it and clicking on
 Edit | Comment
 , or type
 Ctrl
 plus
 D
 on the keyboard.

 	
 In the
 Editor
 pane, type in the following:
 translate([30, 0])

 square([60, 70], center=true);

 	
 Getting

 the size of the square right is a trial-and-error process. With OpenSCAD, we can easily change values while we work on our design. We are not committed to the first shape created. In our code, a square with an
 x
 value of
 60
 and a
 y
 value of
 70
 will work well for our hook. Click on the
 Render
 button, or hit
 F6
 on the keyboard, to see our initial square.

 	
 To round off the square, we will add a circle and use the intersection operation. Change the code from
 Step 2
 to the following:
 intersection()

 {

 translate([20,0])circle(d=80);

 translate([30,0])square([60, 70], center=true);

 }

 	
 A circle with a diameter of
 80
 mm, moved
 20
 mm in the
 x
 direction, provides a good intersection for the square. Click on the
 Render
 button, or hit
 F6
 on the keyboard, to see what we have so far:

 [image: Figure 4.20 – Intersection of a circle and a square

]

 Figure 4.20 – Intersection of a circle and a square

 	
 As we

 can see, the shape is a little more interesting than a simple square. We may change the values at any time during our design to fine-tune it. With our desired shape, it is time to change our 2D design to a 3D design, and move the shape into place. We will use a
 linear_extrude()
 operation and a
 translate()
 operation to do this. Change the code from
 Step 4
 to the following:
 translate([25,0,45])

 linear_extrude(15)

 intersection()

 {

 translate([20,0])circle(d=80);

 translate([30,0])square([60, 70], center=true);

 }

 	
 The
 linear_extrude()
 operation turns our 2D shape into a
 15
 mm thick 3D shape, and the
 translate()
 operation moves it into the proper place for our design. Uncomment out the previous code. Click on the
 Render
 button, or hit
 F6
 on the keyboard, to see the design up to this point:

 [image: Figure 4.21 – Hook added to the design

]

 Figure 4.21 – Hook added to the design

 	
 The only thing

 left to do is to cut away a half-circle at the top of the hook. We do this by subtracting a cylinder put in the proper place. For our final design, the first part of our code builds the base cylinder shape:
 $fn=100;

 difference()

 {

 union()

 {

 difference()

 {

 difference()

 {

 difference()

 {

 cylinder(d1=90, d2=100, h=60);

 translate([0, 0, -10])

 cylinder(d=42.5, h=100);

 }

 translate([-100,0,0])

 cube([200, 200, 200], center=true);

 }

 union()

 {

 translate([0,0,15])

 rotate([0,90,0])

 cylinder(d=3, h=100);

 translate([0,0,35])

 rotate([0,90,0])

 cylinder(d=3, h=100);

 translate([45,0,15])

 rotate([0,90,0])

 cylinder(d=10, h=50);

 translate([45,0,35])

 rotate([0,90,0])

 cylinder(d=10, h=50);

 }

 }

 	
 The second part

 of our code adds the hook and creates the groove at the top of the hook:
 translate([25,0,45])

 linear_extrude(15)

 intersection()

 {

 translate([20,0])circle(d=80);

 translate([30,0])square([60, 70], center=true);

 }

 }

 translate([60,50,70])

 rotate([90,0,0])

 cylinder(d=30, h=100);

 }

 	
 Click on the
 Render
 button, or hit the
 F6
 key, to see our completed design:

 [image: Figure 4.22 – Completed PVC hook design

]

 Figure 4.22 – Completed PVC hook design

 This

 completes our design. As we can see, the code for even simple objects can become quite complex. In the coming chapters, we will organize our code into modules and libraries to make it easier to understand and maintain.

 Summary

 In this chapter, we introduced the CAD design software, OpenSCAD. We discussed some of its features and compared it to other CAD environments on the market. We then became familiar with its graphical interface by looking at the major components.

 We started writing code to generate our first design and learned a little bit about the types of objects available in OpenSCAD. We took a hands-on approach to learning by creating a simple sphere. We looked at the Boolean and transformation operations and demonstrated these concepts with examples. We finished off the chapter by creating a PVC pipe hook.

 In the next chapter, we will take what we have learned so far and dive a little deeper into more complex OpenSCAD coding.

 Chapter 5

 : Using Advanced Operations of OpenSCAD

 Based on what we initially saw while loading OpenSCAD, we may have underestimated its power. However, by using advanced operations, we can create dynamic design code – or, in other words, code that can easily be reused for multiple designs.

 OpenSCAD lets you add and extrude text for use in creating designs that can be used in mass customization business models – an absolute strength of 3D printing. With mass customization, we can tailor our product specifically to our client at a scale that was not possible in the days before 3D printers.

 In this chapter, we will cover the following topics:

 	Turning 2D shapes into 3D objects

 	Looking at advanced OpenSCAD commands

 	Simplifying our code with modules

 Technical requirements

 The following will be required to complete the chapter:

 	Any late model Windows, macOS, or Linux computer that can install OpenSCAD

 	
 The code and images for this chapter, which can be found at
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter5
 .

 Turning 2D shapes into 3D objects

 Part of constructing our PVC Hook in

 Chapter 4

 ,
 Getting Started with OpenSCAD
 , involved using the
 linear_extrude
 command to turn a 2D shape into a 3D shape. We created the 2D shape

 in OpenSCAD using the shapes

 it had available.

 Although the result was what we needed, there will be times when we may require a shape that is a little difficult to create in OpenSCAD. For these situations, we must import a
 .svg
 file and then extrude it.

 In this section, we will do just that. We will create a 3D printable Thumbs Up award, import it as a
 .svg
 file, and then extrude it.

 Importing SVG files into OpenSCAD

 To import a
 .svg
 file into OpenSCAD, we can

 use the
 import
 command. To import

 the Thumbs Up graphic

 for our design, do the following:

 	
 Download the
 ThumbsUp.svg
 file from the following GitHub location:
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter5/images
 .

 	
 Create a new OpenSCAD file called
 thumbs-up-award.scad
 and save it in the same location as the
 ThumbsUp.svg
 file.

 	
 Type in the following line in the Editor:
 import("ThumbsUp.svg", center=true);

 	Save the file. Observe the following shape in the Object Display:

 [image: Figure 5.1 – Importing ThumbsUp.svg

]

 Figure 5.1 – Importing ThumbsUp.svg

 	
 If the shape cannot be seen, scroll out or click on
 View All
 (
 Ctrl
 +
 Shift
 +
 V
).

 Although seeing

 a large thumbs-up sign

 in our Object Display

 is impressive, there is not much we can do with it, in its current form. We will have to extrude it to make it a 3D shape, and then add a base to turn it into an award that can sit on a desk.

 Let's do this now.

 Creating a 3D Thumbs Up symbol

 Using the
 center=true
 option makes

 working with a graphic file much easier, as we know we will have the same starting position for any additional shapes we add. Before we can

 add more shapes, we must turn our graphic into a 3D shape. To do so, follow these steps:

 	
 Add a
 linear_extrude
 command before the imported graphic. To keep the code clean, we will use separate lines:
 linear_extrude(10)

 import("ThumbsUp.svg", center=true);

 By passing in the value of
 10
 to the
 linear_extrude
 command, we are telling the OpenSCAD compiler to extrude our shape out by 10 mm.

 	
 Click on the
 Render
 button or hit
 F6
 on your keyboard. Observe that our Thumbs Up graphic is now a 3D shape:

 [image: Figure 5.2 – Thumbs Up after using the extrude operation

]

 Figure 5.2 – Thumbs Up after using the extrude operation

 	
 To make it easier to work with our new shape, let's rotate it so that we can add a base under it. Add the following
 rotate
 command before the
 linear_extrude
 command:
 rotate([90,0,0])

 	
 Click on the
 Render
 button

 or hit
 F6
 on your keyboard. Observe that an extruded Thumbs Up

 object appears in the Object Display and is rotated along the
 x
 axis:

 [image: Figure 5.3 – Extruded Thumbs Up graphic

]

 Figure 5.3 – Extruded Thumbs Up graphic

 Now that we have an extruded shape, let's add a base to it.

 Extruding the base

 Adding a base

 is relatively simple. We could use a 3D cylinder, but for our design, we will create our base as a 2D shape, and then use the
 rotate_extrude
 command to turn it into a 3D shape. To do this, follow these steps:

 	
 We will start by commenting out the existing code. Highlight the code that's been written and hit
 Ctrl
 +
 D
 on your keyboard.

 	
 For our initial shape, we will subtract a circle from a square using the
 difference
 operation. In the Editor, type

 the following:
 difference()

 {

 translate([100,0])square(200, true);

 translate([200,0])circle(80);

 }

 	
 Click on the
 Render
 button or hit
 F6
 on your keyboard. Observe that our initial shape looks as follows:

 [image: Figure 5.4 – Initial base shape

]

 Figure 5.4 – Initial base shape

 	
 To turn our 2D shape

 into a 3D shape, we will use the
 rotate_extrude
 operation. Using this operation, our 2D shape will be rotated along the
 y
 axis, and then the new shape will rotate 90 degrees along the
 x
 axis. Add the
 rotate_extrude
 operation before the
 difference
 operation so that our code looks like this:
 rotate_extrude(angle=360)

 difference()

 {

 translate([100,0])square(200, true);

 translate([200,0])circle(80);

 }

 The
 rotate_extrude
 operation takes a parameter called
 angle
 . This specifies the amount of rotation that is applied to our 2D shape. In our case, we would like

 it to be a closed shape, so we passed in a value of
 360
 degrees.

 	
 Hit
 F6
 or click the
 Render
 button. Observe that our 2D shape is now a 3D shape and has been rotated 90 degrees in the
 x
 direction:

 [image: Figure 5.5 – Extruded base

]

 Figure 5.5 – Extruded base

 	
 Although our shape does look like a base, it would be nice to stretch it vertically to give it a taller look. We could change the parameters of our 2D rectangle and circle; however, an easier solution is to stretch our shape with the
 scale
 operation. Add the
 scale
 operation before the
 rotate_extrude
 operation

 so that our code looks like this:
 scale([1,1,3])

 rotate_extrude(angle=360)

 difference()

 {

 translate([100,0])square(200, true);

 translate([200,0])circle(80);

 }

 The
 scale
 operation takes
 x
 ,
 y
 , and
 z
 scale factors as one parameter (enclosed in square brackets). By setting the value to
 [1,1,3]
 , we are keeping the same size in the
 x
 and
 y
 directions but stretching it three times in the
 z
 direction.

 	
 Hit
 F6
 or click the
 Render
 button. Observe that our base is now taller:

 [image: Figure 5.6 – Base after using the scale operation

]

 Figure 5.6 – Base after using the scale operation

 Now that we have created

 the base, it is time to uncomment out the Thumbs Up object and place it on the base.

 Putting the base and Thumbs Up object together

 We will now uncomment out the Thumbs Up object

 and move it up in the
 z
 direction so that it will fit neatly on top of the base. To do this, follow these steps:

 	
 Select and uncomment out the code that was commented out in
 Step 1
 of the
 Extruding the base
 section.

 	
 To make our base smoother, put the following code at the top:
 $fn=200;

 	
 Now, we will move our Thumbs Up object up in the
 z
 direction so that it will fit on the base. To do this, we will use the
 translate
 operation just before the
 rotate
 operation. Our code should look like this:
 $fn=200;

 translate([0,0,545])

 rotate([90,0,0])

 linear_extrude(10)

 import("ThumbsUp.svg", center=true);

 scale([1,1,3])

 rotate_extrude(angle=360)

 difference()

 {

 translate([100,0])square(200, true);

 translate([200,0])circle(80);

 }

 Using the
 translate
 operation, we can move the Thumbs Up award up by the value of
 545
 (this value is determined by trial and error). This places the Thumbs

 Up object neatly on top of the base.

 	
 Hit
 F6
 or click the
 Render
 button. Observe that our object looks as follows:

 [image: Figure 5.7 – Thumbs Up object on top of the base

]

 Figure 5.7 – Thumbs Up object on top of the base

 As we can see, the Thumbs Up object sits just on top of the base. Our completed design can now be 3D printed.

 However, if we want to 3D print

 our award, we will require support material for the empty area inside the hand. This would have to be removed and may damage our print. A better way to print our Thumbs Up award would be to divide

 it into two pieces and glue them together. Let's do just that.

 3D printing our Thumbs Up award

 The logical division

 for our award would be where the base and the Thumbs Up object intersect. Cutting a groove

 that fits the Thumbs Up object into the base would make gluing easier.

 To create a base with a cut-out, we can use the
 difference
 operation on the base:

 	
 To create the cut-out, change our code to the following:
 $fn=200;

 difference()

 {

 scale([1,1,3])

 rotate_extrude(angle=360)

 difference()

 {

 translate([100,0])square(200, true);

 translate([200,0])circle(80);

 }

 translate([0,0,545])

 rotate([90,0,0])

 linear_extrude(10)

 import("ThumbsUp.svg", center=true);

 }

 Using Modules for our Code

 As code starts to grow, it is a good idea to wrap it inside modules. Modules allow us to simplify our code into one line since calling a module replaces many lines. We will be implementing modules in the
 Simplifying our code with modules
 section.

 We modified the code

 to put the base first as we want to cut out the Thumbs Up

 object from the base to create the groove.

 	
 Hit
 F6
 or click the
 Render
 button. Observe that the base now has a groove cut out:

 [image: Figure 5.8 – Base with groove

]

 Figure 5.8 – Base with groove

 	
 To create just the Thumbs Up

 object, we will return to using the
 linear_extrude
 operation

 on the imported
 .svg
 file. Open a new file in OpenSCAD and put in the following code:
 linear_extrude(10)

 import("ThumbsUp.svg", center=true);

 	
 Hit
 F6
 or click the
 Render
 button. Observe the extruded Thumbs Up object shown in
 Figure 5.2
 .

 In

 Chapter 7

 ,
 Creating a 3D-Printed Name Badge
 , we will start printing out our designs. For now, it is enough to know that we should always consider how an object will be 3D printed before we start our design.

 By breaking our Thumbs Up award

 into two pieces, we make it easier to print. The following screenshot

 shows how we would print out our object using Cura:

 [image: Figure 5.9 – Thumbs Up award in Cura

]

 Figure 5.9 – Thumbs Up award in Cura

 The objects shown in the preceding screenshot

 have been scaled to 20% to have them fit on the build plate of our Ender 3 V2. For reference, the base will print out with a diameter

 of 80 mm and a height of 120 mm.

 As we can see, it would be relatively easy to glue our Thumbs Up award together after printing. The groove in the base provides a friction fit for the Thumbs Up object to hold it while the glue dries.

 Taking Layer Lines into Account

 When we print out our designs, we should always take the layer lines into account. An object will always

 be weaker along layer lines due to the way
 fused deposit modeling
 (
 FDM
) 3D printing works. By printing the Thumbs Up object flat, we not only reduce the printing time but also make the object much stronger.

 Although most of us would have limited use for a Thumbs Up award, it is easy to see how the concepts we've used here to create

 the award may be applied elsewhere. Having the ability to import
 .svg
 files and turn them into 3D objects allows us to create

 detailed designs that would be difficult to create any other way.

 Now that we have a grasp of turning 2D shapes into 3D objects in OpenSCAD, let's look at some of the more complex OpenSCAD operations.

 Looking at advanced OpenSCAD commands

 A quick and extensive reference for OpenSCAD commands is the OpenSCAD cheat sheet, which can

 be accessed from the
 Help
 menu (click on
 Help
 |
 Cheat Sheet
). As we can see, there are quite a few operations and commands that we can add to our OpenSCAD scripts.

 In this section, we will look at a few of these operations to create a plaque for our Thumbs Up award. Specifically, we will look at the
 text
 and
 len
 operations.

 We will start by looking at the fonts that are available for the
 text
 operation. For our purposes, we will be using a monospaced font.

 What Are Monospaced Fonts?

 Those of us who are old enough

 to remember a world where correspondence was done using typewriters are already familiar with monospaced fonts. If we think of the way a typewriter punches letters onto paper, we can visualize that the space between each letter is the same (monospaced). With the introduction

 of word processors, proportional fonts became possible for creating text that is more visually appealing.

 Let's take a look at the fonts we can use in our design.

 Exploring the available fonts

 With OpenSCAD, we do not need to install extra fonts to use the
 text
 operation. We can simply

 call upon the fonts that have already been installed

 in our operating system using the OpenSCAD
 Font List
 dialog. We can use this tool to copy the desired font name to our clipboard and paste it into our program.

 To do so, follow these steps:

 	
 In OpenSCAD, click on
 Help | Font List
 . The
 OpenSCAD Font List
 dialog will open.

 	
 Scroll down the list and select the
 Courier New
 font. If this font is not available, select another monospaced font, such as
 Lucida Sans Typewriter
 :

 [image: Figure 5.10 – OpenSCAD Font List

]

 Figure 5.10 – OpenSCAD Font List

 	
 To copy the font name to our clipboard, click on the
 Copy to Clipboard
 button.

 	
 Click
 OK
 to close the dialog.

 Now that we have copied

 the font name, it is time to use it in an OpenSCAD program. To do

 this, we will use the
 text
 operation to create a plaque for our Thumbs Up award.

 Exploring the text operation

 The
 text
 operation in OpenSCAD is easy

 to use. It takes in a string of text to be displayed, as well

 as other parameters such as
 size
 and the
 font
 name. To use the
 text
 operation, follow these steps:

 	
 In a new OpenSCAD file, type in the following:
 text("Good Job!", font=

 	
 Position the cursor to the right of the
 =
 sign and paste the contents of the clipboard. Close the statement with a right round bracket and semi-colon. The code should look as follows:
 text("Good Job!", font="Courier New:style=Regular");

 	
 Hit
 F6
 or click the
 Render
 button. Observe that the text
 Good Job!
 is displayed:

 [image: Figure 5.11 – Output of the text operation

]

 Figure 5.11 – Output of the text operation

 	
 As OpenSCAD is a programming environment, we can use variables as substitutions for values. For our case, this would be the text we display on our plaque. Using a variable, named
 display_text
 , change the code to the following:
 display_text="Good Job!";

 text(display_text, font="Courier New:style=Regular");

 What we have done

 here is substitute the
 Good Job!
 string

 in the
 text
 operation with a variable set to the same value.

 	
 Hit
 F6
 or click the
 Render
 button. Observe that we get the same result that's shown in the preceding screenshot.

 	
 To make use of our text, we need

 to convert it into 3D. To do that, we can use the
 linear_extrude
 operation. We will extrude

 our text by 5 mm. Modify the code to the following:
 display_text="Good Job!";

 linear_extrude(5)

 text(display_text, font="Courier New:style=Regular");

 	
 Hit
 F6
 or click the
 Render
 button. Observe that our text is now 3D:

 [image: Figure 5.12 – Extruded text

]

 Figure 5.12 – Extruded text

 As we can see, adding text to our OpenSCAD designs is not difficult. Substituting variables for display values is a good practice as variables are generally set at the beginning of a program and are easy to find. This allows the programmer to change

 display values quickly.

 Now that we understand the
 text
 operation, we will create a plate that the text will sit on.

 Creating a dynamic backing plate

 To create a dynamic backing

 plate, we need to know the size

 of the text we are displaying. We purposely used a monospace font so that we know that to determine the size of the plate, we simply need to count the number of characters and multiply it by the size of one character. We will count the number of characters using the
 len
 operation and display the number with the
 echo
 operation.

 To do this, we must modify the code from the previous section:

 	
 Modify the code from the
 Exploring the text operation
 section so that it looks like this:
 display_text="Good Job!";

 linear_extrude(5)

 text(display_text, font="Courier New:style=Regular");

 echo(len(display_text));

 	
 Using the
 echo
 operation, we send information to the console. In our case, we are interested in the length of the string that's stored in the
 display_text
 variable. We use
 display_text
 to store the
 Good Job!
 string, which is displayed in our design. The
 len
 operation returns the length of the string that's stored in the
 display_text
 variable. Hit
 F6
 or click the
 Render
 button. Observe the text
 ECHO
 in the console, followed by the number
 9
 :

 [image: Figure 5.13 – Echo message in the console

]

 Figure 5.13 – Echo message in the console

 	
 The number
 9
 represents

 the number of characters

 in the
 Good Job!
 string, which is stored in the
 display_text
 variable. To verify that
 len
 and
 echo
 work properly, change the value of
 display_text
 to the following:
 display_text="Very Good Job!";

 	
 Hit
 F6
 or click the
 Render
 button. Verify that the value following
 ECHO
 has changed to
 14
 , which corresponds to the number of characters in the
 Very Good Job!
 string.

 	
 Now that we know how to retrieve the number of characters in a string, it is time to use this information to build a backing plate. To do so, let's build a plate around a single character first so that we know what size plate we need. Change the value of
 display_text
 to the following:
 display_text="A";

 	
 Setting
 display_text
 to
 A
 will allow us to find the correct size for a single character. Since we are using a monospaced font, this value will be the same, regardless of which character we use. The
 A
 value is arbitrary. Add the following to the bottom of the code:
 cube([8.3,9,2]);

 	
 This code adds a cube to our design with an
 x
 value of
 8.3
 , a
 y
 value of
 9
 , and a
 z
 value of
 2
 . Hit
 F6
 or click the
 Render
 button. Verify that our design looks as follows:

 [image: Figure 5.14 – Letter A extruded with a backing plate

]

 Figure 5.14 – Letter A extruded with a backing plate

 	
 Looking closely at the backing

 plate, we can see that it sits

 right in the middle of the letter
 A
 . You can make changes to both the
 x
 and
 y
 values to make any adjustments. Now that we have the correct size for our character, it is time to use the
 len
 operation to create a dynamic backing plate. Change the code from
 Step 6
 to the following:
 cube([len(display_text)*8.3,9,2]);

 	
 This code will check the length of
 display_text
 and multiply it by the size of a single character (
 8.3
). Change the value of
 display_text
 back to the original text. Our completed code should look as follows:
 display_text="Good Job!";

 linear_extrude(5)

 text(display_text, font="Courier New:style=Regular");

 echo(len(display_text));

 cube([len(display_text)*8.3,9,2]);

 	
 Hit
 F6
 or click the
 Render
 button. Verify

 that the backing plate

 covers all the text:

 [image: Figure 5.15 – Dynamic backing plate

]

 Figure 5.15 – Dynamic backing plate

 	
 To use our dynamic backing plate code with different text, we can simply change the value of
 display_text
 and render our design. Let's do just that. Change the value of
 display_text
 to the following:
 display_text="Best in Class!";

 	
 Hit
 F6
 or click the
 Render
 button. Verify that our design now looks as follows:

 [image: Figure 5.16 – Rendered Best in Class plaque

]

 Figure 5.16 – Rendered Best in Class plaque

 As we can see, writing our code with built-in dynamic elements allows us to quickly modify

 our designs. However, the more dynamic elements

 we add, the more complex our code becomes. This is where modules come in handy. In the next section, we will simplify our code by writing modules.

 Simplifying our code with modules

 As we've seen, OpenSCAD code can start to become quite complex. This not only makes it more difficult

 to maintain but makes our coding

 prone to errors. An elegant way to deal with this is to break our code into modules. Although we can put any code we want into a module, it is best practice to keep a module limited to a single function. For example, a good way to break up the Thumbs Up award would be by using code to create the base, code to create the Thumbs Up symbol, and code to create the plaque.

 The syntax to create a module in OpenSCAD is the word
 module
 , followed by opening and closing parenthesis and open and closing curly braces:

 module name_of_module(parameters)

 {

 body_of_module

 }

 As we can see, modules are similar in their syntax to the
 difference
 ,
 union
 , and
 intersection
 operations. It is a good idea to name the modules with verbs since they perform actions.

 We will start exploring

 modules by enclosing the

 code to create the Thumbs Up object.

 Creating a module for our Thumbs Up object

 To encapsulate the code

 to create the Thumbs Up object

 in a module, we can simply wrap the code with the proper syntax. To do this, follow these steps:

 	
 In a new OpenSCAD file, create a module using the following code:
 module create_thumbs_up()

 {

 }

 	
 Save the file to the same location as the
 ThumbsUp.svg
 file.

 	
 Insert this code to create the Thumbs Up object between the curly braces so that it looks as follows:
 module thumbs_up()

 {

 rotate([90,0,0])

 linear_extrude(10)

 import("ThumbsUp.svg", center=true);

 }

 	
 If we were to try and render our design at this stage, we would not see anything as we have only defined the module and not called it. To implement the module, we must call it as if it were a built-in operation in OpenSCAD. Put the following code below the module code:
 thumbs_up();

 	
 Hit
 F6
 or click the
 Render
 button. Verify that we see the Thumbs Up object in the Object Display, as shown in
 Figure 5.3
 .

 	
 Although our module

 works as intended, it is very

 specific to the
 ThumbsUp.svg
 file. It would be nice to make our module a bit more dynamic and have it extrude any
 .svg
 file. To do so, we may take advantage of the ability to pass parameters into a module. Change the code to the following to make our module more dynamic:
 module create_3D_from_svg(path)

 {

 rotate([90,0,0])

 linear_extrude(10)

 import(path, center=true);

 }

 create_3D_from_svg("ThumbsUp.svg");

 	
 Hit
 F6
 or click the
 Render
 button. Verify that the Thumbs Up object is shown in the Object Display, as shown in
 Figure 5.3
 .

 	
 By giving our module a more generic name and passing in the path to our .
 svg
 file, we can use the module for whichever 2D file we choose. This makes our code more dynamic. To clean up the Editor, let's close the body of the module by clicking on the
 –
 symbol:

 [image: Figure 5.17 – The create_3D_from_svg module

]

 Figure 5.17 – The create_3D_from_svg module

 As we can see, modules help in simplifying our code by breaking it into more manageable pieces. Now that

 we have the Thumbs Up object creation

 encapsulated in a module, let's turn our attention to the base.

 Creating a module for the base

 For our base, there

 are a few parameters that we can make dynamic. The most logical would be to parameterize the scale factors. However, we will leave the scale factors alone for now and focus on modifying the shape. We will use a default value to create a default shape.

 To do this, follow these steps:

 	
 Comment out the following line so that we can start with a blank Object Display:
 //create_3D_from_svg("ThumbsUp.svg");

 	
 One of the benefits of writing our code with modules is not having to comment out a lot of code when we want to try something new. We simply need to comment out the call to the module. Place your cursor above the line we just commented out and type in the following:
 module create_base(shape=1)

 {

 scale([1,1,3])

 rotate_extrude(angle=360)

 difference()

 {

 translate([100,0])square(200, true);

 translate([200,0])circle(80 * (1/shape));

 }

 }

 create_base();

 By using a default

 parameter (
 shape=1
), we can call our module without parameters. Here, we are using the
 shape
 variable to modify the radius of the circle, and thus the overall shape of our base.

 	
 Hit
 F6
 or click the
 Render
 button. Verify that our base looks the same as what's shown in
 Figure 5.6
 .

 	
 Now, let's change the shape of our base by passing in a number other than
 1
 . Change the
 create_base()
 call to the following:
 create_base(2);

 	
 Hit
 F6
 or click the
 Render
 button. Observe that the shape of the base has changed:

 [image: Figure 5.18 – Modified base

]

 Figure 5.18 – Modified base

 Now that we have

 a module for the base, it is time to turn our attention to the plaque. In the next section, we will create a module that will generate the plaque for our award.

 Creating a module for the plaque

 For our plaque, we know

 that the text that's displayed is dynamic. We could

 make the font dynamic as well; however, we would be essentially limited to monospaced fonts.

 If we compare the size of the base to the plaque, we can see that the base is far larger. This is due to the size of the original
 .svg
 file that we imported as we matched the base to fit it. Thus, a parameter we should consider for our plaque module is a scale factor.

 To make our plaque a bit more visually appealing, we should add more space above and below the letters. Also, centering the plaque on the
 x
 axis will make it easier to move around. We can achieve both these things using the
 translate
 operation.

 To write our module, follow these steps:

 	
 Comment out the
 create_base();
 line.

 	
 Add the following code below the existing modules:
 module create_plaque(display_text, scale_factor=1)

 {

 size=len(display_text)*(8.3);

 scale([scale_factor,scale_factor,scale_factor])

 translate([-size/2,0,0])

 union()

 {

 linear_extrude(5)

 text(display_text,

 font="Courier New:style=Regular");

 translate([0,-9,0])

 cube([size,20,2]);

 }

 }

 What we are doing here is passing in the plaque text, as well as a scale factor. We are using

 a default value of
 1
 for the scale factor

 so that we do not need to set this value if we are not changing the size of our plaque. The
 size
 variable is used to store the size of our plaque. It is determined by taking the length of the text that's passed in and multiplying it by
 8.3
 (the size of a character). By knowing
 size
 , it is easy to determine how far to move our plaque negatively in the
 x
 direction to center it as it would be half of
 size
 . A
 translate
 operation (
 translate([0,-9,0])
) is added to account for a larger
 y
 size of the cube (
 20
) than what was provided in the
 Creating a dynamic backing plate
 section. This results in space above and below the text to give it a nicer look with a larger bottom section, as this will be where the plaque is inserted into the base.

 	
 Hit
 F6
 or click the
 Render
 button. Observe that the plaque has been created and is in the center of the Object Display:

 [image: Figure 5.19 – Plaque rendered using a module

]

 Figure 5.19 – Plaque rendered using a module

 Now that we have the three modules, we will put them together and redesign our Thumbs Up award.

 Creating a design using modules

 To start our design, it is a good

 idea to minimize the modules that we've created and delete the code that calls them. Our Editor should look as follows:

 [image: Figure 5.20 – Modules minimized

]

 Figure 5.20 – Modules minimized

 Now, we will start to code our design. We will use modules to create the shapes and the
 translate
 operation to move the shapes into place. To do this, follow these steps:

 	
 We will start by creating the base. Below the modules, type in the following in the Editor:
 $fn=200;

 create_base(2);

 	
 With this code, we are creating a base with a shape that's been modified by passing in the number
 2
 (as opposed to
 1
 , so that we can create a thicker base than the one shown in
 Figure 5.6
). Normally, we would put the
 $fn=200;
 line at the top of our program; however, it will serve well in this spot as we can easily change

 it if rendering is taking too long. Hit
 F6
 or click the
 Render
 button. You will see that the base has been created:

 [image: Figure 5.21 – Base generated from a module

]

 Figure 5.21 – Base generated from a module

 	
 To create the Thumbs Up symbol and place it in the right spot (as we did in the
 Putting the base and Thumbs Up object together
 section), we can use the
 translate
 operation on the
 create_3D_from_svg()
 module. Add the following code:
 translate([0,0,545])

 create_3D_from_svg("ThumbsUp.svg");

 	
 Hit
 F6
 or click the
 Render
 button. Observe

 that the Thumbs Up symbol appears on top of the base, as it did in
 Figure 5.7
 :

 [image: Figure 5.22 – The base and Thumbs Up generated using modules

]

 Figure 5.22 – The base and Thumbs Up generated using modules

 	
 Now that we have the base and Thumbs Up object in place, it is time to create the plaque

 and put it in place. Add the following code:
 translate([0,-10,310])

 rotate([90,0,0])

 create_plaque("Good Job!",4);

 What we are doing here is creating a plaque with the text
 "Good Job!"
 at a four times scale, rotating it, and then moving it into place. The values we use in the
 translate
 operation

 are derived from trial and error.

 	
 Hit
 F6
 or click the
 Render
 button. Observe the completed design:

 [image: Figure 5.23 – The completed design

]

 Figure 5.23 – The completed design

 As we can see, dividing

 our code into modules makes it easier to create designs in OpenSCAD. Once a module has been defined, we can minimize it to create space in the Editor. Writing our modules to accept parameters

 makes them dynamic, which leads to more reusable code.

 Summary

 In this chapter, we dived deeper into the functionality of OpenSCAD. We learned how to create a 3D design from a 2D
 .svg
 file and how to scale 3D objects in our code. We looked at the
 text
 operation and created a dynamic plaque that adjusted its size to the text that sat on it.

 Modules gave us the ability to organize our code more effectively. By creating modules based on actions, we were able to redesign our Thumbs Up award quickly.

 In the next chapter, we will investigate some of the most common OpenSCAD libraries as we continue to learn more about this powerful CAD environment.

 Chapter 6

 : Exploring Common OpenSCAD Libraries

 Reusing code written by others is an excellent way to speed up our CAD design process. With OpenSCAD, there are numerous libraries of code that we can utilize to create new and exciting designs. In this chapter, we will create a desk drawer using the BOSL Standard Library. Afterward, we will re-use the code we wrote to create our own OpenSCAD library.

 In this chapter, we will cover the following:

 	Exploring the OpenSCAD General libraries

 	Exploring the OpenSCAD Single Topic libraries

 	Creating our own OpenSCAD library

 Technical requirements

 The following is required to complete this chapter:

 	Any late-model Windows, macOS, or Linux computer that can install OpenSCAD.

 	
 The code and images for this chapter can be found here:
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter6
 .

 Exploring the OpenSCAD General libraries

 The General libraries in

 OpenSCAD includes the BOSL, dotSCAD, NopSCADlib, and BOLTS libraries. Implementing these libraries allows us to add things such as threaded rods, modeled parts (parts that are not 3D-printed but are used in designs), and mathematically complex shapes. The following section

 includes a short breakdown of each of these libraries.

 BOSL

 The
 Belfry OpenSCAD Library
 (
 BOSL
) consists of operations to create shapes such as rounded boxes

 and threaded rods. Operations to

 enhance OpenSCAD's translate and rotate operations are also included in the BOSL.

 In
 Figure 6.1
 , we can see a threaded rod created using the BOSL:

 [image: Figure 6.1 – A threaded rod created with the BOSL

]

 Figure 6.1 – A threaded rod created with the BOSL

 We will be exploring the BOSL in more detail in the upcoming
 Using the BOSL to design a desk drawer
 section.

 dotSCAD

 The
 dotSCAD
 library aims to reduce mathematical complexity when using OpenSCAD. We can

 utilize dotSCAD to create complex shapes for our

 designs. In
 Figure 6.2
 , we can see a rose created in OpenSCAD using the dotSCAD library:

 [image: Figure 6.2 – An OpenSCAD rose using the dotSCAD library

]

 Figure 6.2 – An OpenSCAD rose using the dotSCAD library

 This rose can be modified and easily put into our designs, saving us the hassle of importing a rose as a 3D object.

 NopSCADlib

 The
 NopSCADlib
 library provides modeled parts for use in our OpenSCAD designs. These parts include things such

 as bearings, batteries, and

 parts for RepRap 3D printers that cannot be 3D-printed.

 In
 Figure 6.3
 , we can see a hygrometer rendered in OpenSCAD using the NopSCADlib library:

 [image: Figure 6.3 – A hygrometer from the NopSCADlib library rendered in OpenSCAD

]

 Figure 6.3 – A hygrometer from the NopSCADlib library rendered in OpenSCAD

 This object was

 rendered using a single line of code and

 represents the standard mini hygrometer that can be purchased online at places such as Amazon and eBay.

 Hygrometers and 3D Printing

 Hygrometers measure ambient temperature and relative humidity and are useful tools for 3D printing. For hygroscopic filaments, such as nylon, it is important to keep the environment as dry as

 possible when storing and printing. Hygrometers placed with filaments in vacuum bags or in 3D printer enclosures allow us to measure the relative humidity and adjust the environment (such as the addition of silica packets).

 Rendering non-3D-printable objects in OpenSCAD allows us to design around objects such as hygrometers. This saves us from having to measure the part in the real world and compensate for it in our OpenSCAD design.

 BOLTS

 BOLTS
 (not an acronym) is a free and open source library of standard parts that we can incorporate into

 our OpenSCAD designs. These parts consist

 mainly of standard nuts, bolts, pipes, and so on that we can use with our 3D-printed parts in our projects.

 In
 Figure 6.4
 , we can see a pipe generated using the BOLTS library. Three parameters were used to create this pipe – the inside diameter (8 mm), the outside diameter (10 mm), and the length of the pipe (50 mm). The part was generated with the
 pipe(10, 8, 50)
 command:

 [image: Figure 6.4 – A pipe generated with the BOLTS library in OpenSCAD

]

 Figure 6.4 – A pipe generated with the BOLTS library in OpenSCAD

 Now that we have looked briefly at the OpenSCAD standard libraries, let's create a design using what we have learned. We will design a desk drawer by utilizing the BOSL. To create this design, we will download and install the library onto our computer. We will then use modules

 from the BOSL to create our desk drawer – a drawer

 with rails that rides on sliders bolted to the underside of a desk.

 Let's get started.

 Using the BOSL to design a desk drawer

 As mentioned in the previous section, there are shapes such as rounded boxes that we can create

 using the BOSL. We will design

 our desk drawer using these shapes from the BOSL.

 We will start by downloading and installing the library.

 Downloading and installing the BOSL

 To download the BOSL, we

 do so from the OpenSCAD

 website. We then unzip, rename, and copy the contents into our OpenSCAD
 libraries
 folder.

 To do so, follow these steps:

 	
 Navigate to the OpenSCAD libraries web page using the following URL:
 http://www.openscad.org/libraries.html
 .

 	
 Click on the
 Library
 link under
 BOSL
 . This will take us to the GitHub page for the BOSL.

 	
 Click on the green
 Code
 drop-down button and select
 Download ZIP
 .

 	
 Download and unzip the file. Observe that there is a folder called
 BOSL-master
 . Open this folder.

 	
 Observe that there is a folder with the same name (
 BOSL-master
) inside. Rename this folder
 BOSL
 .

 	
 In OpenSCAD, click on
 File
 |
 Show Library Folder...
 . Observe that the
 libraries
 folder opens.

 	
 Copy the
 BOSL
 folder to the
 libraries
 folder.

 We have now

 installed the BOSL into our

 OpenSCAD installation. Let's start our design by creating the tray portion with a BOSL rounded box.

 Creating the drawer tray

 Before we create our design, we must

 import the libraries we require and set any variables we will use. To create the drawer tray of our desk drawer, we will start with a rounded box from the
 shapes.scad
 BOSL file:

 	
 In a new OpenSCAD file, add the following line to the top of the file:
 use <BOSL/shapes.scad>

 Observe that we do not need to put a semicolon at the end of the
 use
 line.

 	
 We will now set the variables for our design. Add the following after the first line:
 $fn=200;

 width = 190;

 length = 190;

 height = 70;

 rail_size=10;

 hollow_factor = 0.95;

 We already know that
 $fn
 sets the resolution of the design. The rest of the variables will be used to create the objects that will form our design.

 	
 Next, add the following line below the variables, which will generate a cuboid shape from the BOSL:
 cuboid([width,length,height], fillet=10);

 We defined
 width
 ,
 length
 , and
 height
 in our variable declarations. The
 fillet
 value sets the roundness of the cuboid.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe the following shape:

 [image: Figure 6.5 – A cuboid generated with the BOSL

]

 Figure 6.5 – A cuboid generated with the BOSL

 	
 We now need to cut our shape in half and hollow it out. We also want to place the code to

 generate the drawer tray in a module. Replace the
 cuboid
 code with the following:
 module create_tray()

 {

 difference()

 {

 cuboid([width,length,height], fillet=10);

 scale([hollow_factor,hollow_factor,hollow_

 factor])

 cuboid([width,length,height], fillet=10);

 translate([0,0,height])

 cube([width*2,length*2,height*2],

 center=true);

 }

 }

 create_tray();

 There is quite a lot of code here, so let's go through it before we render. What we are essentially doing is taking the difference between our original cuboid and a scaled-down version of it. This scaled-down version is 5% smaller as the
 hollow_factor
 value is
 0.95
 (set with the initial variable declarations), and we use the
 scale
 operation to reduce a new version of the cuboid by this much. We then subtract a standard cube to cut the hollowed-out cuboid in half. We simply

 double the
 width
 ,
 length
 , and
 height
 values on the standard cube to get a clean cut. We move the cube up by the value of
 height
 using the
 translate
 operation so that it will be above the
 z
 axis. We need to do this, as the cube is centered with all axes when it is created. Note that we move the cube up by the value of
 height
 and not
 height/2
 as we usually do for objects that are centered on the
 z
 axis. This is due to the
 height*2
 size of our cutaway cube.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe the following shape:

 [image: Figure 6.6 – The tray generated using create_tray() module

]

 Figure 6.6 – The tray generated using create_tray() module

 Now that we have created the tray for our desk drawer, it is time to add side rails and sliders to our

 design. This will allow us to mount our tray under a desk or table.

 Using include or use

 We can import the
 shapes.scad
 file into our design by using an
 include
 statement instead of
 use
 . The difference between the two is in how
 shapes.scad
 is implemented. Both statements will bring in all the modules from
 shapes.scad
 . However, the
 include
 operation will execute any code that sits outside of any modules in
 shapes.scad
 , while the
 use
 operation will not. The difference between the two will become clearer when we create our own library in the
 Creating our own OpenSCAD library
 section.

 We will now turn our attention to using rails and sliders from the BOSL. We use the
 sliders.scad
 file for both. We start by adding rails to our drawer.

 Adding rails to our drawer tray

 The BOSL contains rails and

 sliders that we can use for our desk

 drawer. These parts give us the objects we need to allow our desk drawer to slide in and out from under our table or desk.

 To add rails, follow these steps:

 	
 Add the library for rails and sliders with the following code at the top of our file:
 use <BOSL/sliders.scad>

 	
 Comment out the
 create_tray();
 line so that we can focus on the rails:
 //create_tray();

 	
 Add the following code:
 rail(l=length-20, w=rail_size, h=rail_size);

 What we have done here is to create a rail that is the
 length
 value of our drawer minus
 20
 mm. We make it shorter to account for the round corners of the tray. We have already declared
 rail_size
 to be
 10
 in our variable declarations, and we use this variable to define the
 width
 (
 w
) and
 height
 (
 h
) values of our rail.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe the following shape:

 [image: Figure 6.7 – The rail generated using the BOSL Standard Library

]

 Figure 6.7 – The rail generated using the BOSL Standard Library

 	
 As we can see, we can use this shape for rails on our drawer. However, we must first put the

 shape in the right place. We want to

 encapsulate our code in a module as well. Delete the line
 rail(l=length-20, w=rail_size, h=rail_size)
 ; and add the following module below the
 create_tray()
 module:
 module create_rail()

 {

 translate([width/2,0,-(rail_size/2)])

 rotate([0,90,0])

 rail(l=length-20, w=rail_size, h=rail_size);

 }

 What we have done here is rotate the rail to a position that will make it useful. We then move it to the right by half the
 width
 value, as the tray is positioned in the center of our design. We move it down by half of its
 height
 (
 rail_size/2
) value so that it will be below the
 z
 axis and line up with our tray.

 	
 Before we can

 see the results of our changes, we need

 to call
 create_rail()
 and uncomment out the
 create_tray()
 module:
 create_tray();

 create_rail();

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe the following shape:

 [image: Figure 6.8 – The tray with a rail added

]

 Figure 6.8 – The tray with a rail added

 	
 As we can see, a rail has been added to the right side of our tray. We can modify the
 create_rail()
 module by adding code to put a rail on the left side as well; however, there is an easier solution. Modify the non-module code (code that sits outside of a module and is run when we render) to the following:
 create_tray();

 create_rail();

 mirror([1,0,0])create_rail();

 The
 mirror
 operation does exactly what its name implies – it creates a mirror of an object. The parameters determine where the mirroring occurs based on
 x
 ,
 y
 , and
 z
 values. In our case, we are mirroring in the
 x
 direction.

 	
 Click on
 Render
 or

 hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that there are now two

 rails added to our tray:

 [image: Figure 6.9 – The tray with both rails added

]

 Figure 6.9 – The tray with both rails added

 As we can see, the rails give our drawer something to mount inside a slider. Before we create the sliders for mounting the rails, we will add a handle to the drawer.

 Creating the handle for our drawer

 To create a handle, we

 will use
 cuboid
 from the BOSL and cut away a

 portion of it. We will position this handle on the front of the drawer. We will place the code to do this in a module.

 To create the handle, follow these steps:

 	
 Create a new module below the
 create_rail()
 module with the following code:
 module create_handle(size)

 {

 translate([0,-length/2,-(size*1.5)])

 difference()

 {

 difference()

 {

 cuboid([5*size,3*size,1.5*size],

 fillet=2);

 scale([0.8,0.8,2])

 cuboid([5*size,3*size,1.5*size],

 fillet=2);

 }

 translate([0,size*50,0])

 cube([size*100,size*100,size*100],

 center=true);

 }

 }

 There is a lot of code here. Let's step through it before we move on to implementing it. If we start with the second
 difference()
 operation, we can see that we take the difference between a cuboid created to be
 5
 times the
 size
 parameter in the
 x
 direction,
 3
 times in the
 y
 direction, and
 1.5
 times in the
 z
 direction, with a version of the same cuboid but 80% of its size in the
 x
 and
 y
 directions and 200% in the
 z
 direction.

 These multiplication values are arbitrary and were chosen for the shape that they create. With the first
 difference()
 operation, we simply cut our handle in half with a box that is much bigger and moved over to be on one side of the
 y
 axis. We then moved the whole shape in place with the first
 translate()
 operation, placing it in front of our tray.

 	
 To view our design so far, modify the non-module code to look like the following:
 create_tray();

 create_rail();

 mirror([1,0,0])create_rail();

 create_handle(10);

 With
 create_handle(10);
 , we are creating a handle with a starting value of
 10
 . The result

 will be a handle that is 50 mm in the
 x
 direction, 30 mm

 in the
 y
 direction, and 15 mm in the
 z
 direction.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that our drawer is now complete:

 [image: Figure 6.10 – The completed drawer design

]

 Figure 6.10 – The completed drawer design

 For reference, here

 is a picture of a drawer that has

 been 3D-printed and painted:

 [image: Figure 6.11 – A 3D-printed desk drawer

]

 Figure 6.11 – A 3D-printed desk drawer

 Now that we have

 completed the drawer portion of our desk drawer, it is

 now time to design the sliders that allow the drawers to slide in and out under the table.

 Creating the sliders for our desk drawer

 As mentioned in

 the
 Adding rails to our drawer tray
 section, there

 are slider objects in the BOSL. We will create a slider and then move it into the correct position.

 Let's get started:

 	
 Create a new module with the following code:
 module create_slider(offset)

 {

 base=20;

 slider(l=length,h=rail_size,base=base,

 wall=4,slop=offset);

 }

 What we are doing here is creating
 slider
 equal to the
 length
 value of the drawer with a
 base
 value of
 20
 mm. The
 offset
 value is used to create some space between the rail and the slider.

 	
 To see the slider by itself, comment out all the other non-module code and add a call to the
 create_slider()
 module, as shown in the following snippet:
 //create_tray();

 //create_rail();

 //mirror([1,0,0])create_rail();

 //create_handle(10);

 create_slider(0.4);

 We are calling the
 create_slider()
 module with an
 offset
 value of
 0.4
 . This value may be experimented with to provide a snug fit between the rail and the slider.

 	
 Click on
 Render
 or

 hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that we see a slider

 that looks like the following (ensure that we have use the line
 <BOSL/sliders.scad>
 at the top of our code):

 [image: Figure 6.12 – A slider generated in OpenSCAD using the BOSL Library

]

 Figure 6.12 – A slider generated in OpenSCAD using the BOSL Library

 	
 Now, we will move the slider into place. However, please note that this step is only necessary to check the fit; this is because when we 3D-print the slider, we do so separately from the drawer, as it is not attached to it. Change the code for
 create_slider()
 to the following:
 module create_slider(offset)

 {

 base=20;

 translate([width/2+(rail_size+base),0,

 -rail_size/2])

 rotate([0,-90,0])

 slider(l=length,h=rail_size,base=base,

 wall=4,slop=offset);

 }

 To understand

 what we just did here, let's work from

 the bottom to the top. With this change, we rotate
 slider
 -90
 degrees on the
 y
 axis. We then move it to the right on the
 x
 axis by a value that is equal to half the
 width
 value (as the drawer is centered) plus the size of the rail and slider
 base
 added together (
 width/2+(rail_size+base)
). We then move the slider down so that it lines up with the rail (
 -rail_size/2
).

 	
 To view all the parts we have so far, uncomment out the code commented in
 Step 2
 .Add a second
 create_slider()
 call and use the
 mirror
 operation to create a slider on the other side of the tray. Our non-module code should look like the following:
 create_tray();

 create_rail();

 mirror([1,0,0])create_rail();

 create_handle(10);

 create_slider(0.4);

 mirror([1,0,0])create_slider(0.4);

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that the sliders have been created:

 [image: Figure 6.13 – The sliders generated and put in place

]

 Figure 6.13 – The sliders generated and put in place

 Now that we have

 created the sliders for our desk drawer, there is

 one task that remains. We need to create screw holes on the sliders so that they may be mounted onto the bottom of our desk or table.

 In the next section, we will do just that.

 Adding screw holes to the sliders

 We will create a

 separate module to create the screw holes. We will then call that module from the
 create_slider()
 module. This will keep our code clean and also allow code re-use.

 Let's get started:

 	
 Between the last module and the non-module code, create a new module with the following:
 module create_3mm_screw_hole()

 {

 union()

 {

 cylinder(d=3, h=500);

 translate([0,0,-500])

 cylinder(d=10, h=500);

 }

 }

 	
 Comment out all the non-module code and put the following at the bottom:
 //create_tray();

 //create_rail();

 //mirror([1,0,0])create_rail();

 //create_handle(10);

 //create_slider(0.4);

 //mirror([1,0,0])create_slider(0.4);

 create_3mm_screw_hole();

 What we are doing here is simply creating two cylinders stacked together, one that is 3 mm in

 diameter and one that is 10 mm in diameter. The 3 mm hole is the actual hole our screw will go through; the 10 mm one is the countersink hole for the screw. We have made both cylinders extremely long to provide for clean cuts. The cylinders sit in the middle on the
 z
 axis.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that our cylinders reach above and below the view in the object display area:

 [image: Figure 6.14 – Cylinders created from the create_3mm_screw_hole() module

]

 Figure 6.14 – Cylinders created from the create_3mm_screw_hole() module

 	
 We will now

 modify the code in the
 create_slider()
 module. Change the code in the module to the following:
 module create_slider(offset)

 {

 base=20;

 hole_inset=20;

 difference()

 {

 translate([width/2+(rail_size+base),0,

 -rail_size/2])

 rotate([0,-90,0])

 slider(l=length, h=rail_size,

 base=base,wall=4, slop=offset);

 translate([width/2+(rail_size+(base/2)),

 (length/2)-hole_inset,-rail_size/2])

 create_3mm_screw_hole();

 translate([width/2+(rail_size+(base/2)),

 -((length/2)-hole_inset),-rail_size/2])

 create_3mm_screw_hole();

 }

 }

 Before we render our design, let's go through the changes. Basically, what we are doing in the new
 create_slider()
 module is taking the difference between
 slider
 and a 3 mm screw hole. We have added a new variable called
 hole_inset
 , which is

 the value from the ends of the slider where we want to place our screw holes. In this case, we are putting our screw holes 20 mm from the ends. The
 translate()
 operation moves the holes to the base part of the slider, away from the side where the drawer will slide. The second
 translate()
 operation differs from the first by taking the negative value in the
 y
 direction to make a mirrored copy. The holes are then moved down in the
 z
 direction by half the
 rail_size
 value to countersink the screw hole.

 	
 Before we render our design, we will uncomment out all the non-module code and delete the last non-module line we added in
 Step 2
 . Our non-module code should look like the following:
 create_tray();

 create_rail();

 mirror([1,0,0])create_rail();

 create_handle(10);

 create_slider(0.4);

 mirror([1,0,0])create_slider(0.4);

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that our design is now complete, and the sliders

 now have screw holes with countersinks:

 [image: Figure 6.15 – The final design with screw holes

]

 Figure 6.15 – The final design with screw holes

 We have now finished

 our design of the desk drawer. As we can see, we are able to easily leverage the OpenSCAD standard library to create new and interesting designs.

 In the next section, we will look at OpenSCAD Single Topic libraries.

 Exploring OpenSCAD Single Topic libraries

 Now that we understand how OpenSCAD standard libraries can be utilized to improve our designs, let's look

 at what are called OpenSCAD Single Topic libraries. As their name implies, OpenSCAD Single Topic libraries are used for specific

 purposes, such as creating a threaded nut for a design. There are six libraries listed on the OpenSCAD website (
 http://openscad.org/libraries.html
) under
 Single Topic
 . We will look at the four most relevant (for our purposes) libraries:

 	Round Anything

 	Mark's Enclosure Helper

 	
 The OpenSCAD
 threads.scad
 module

 	The OpenSCAD smooth primitives library

 Let's start with the Round Anything library.

 Round Anything

 The motivation

 behind the Round Anything library is, as its name implies, to round parts. Standard OpenSCAD code lacks the

 functionality for rounding basic shapes. Installing this library provides a good tool to use in our designs.

 For our example, however, we will look at the
 shell2d()
 operation, which ironically does not round a part. With
 shell2d()
 , we create a hollow outline of a 2D shape. We can then use the
 gridpattern()
 operation from Round Anything to create a grid inside the new shape.

 In
 Figure 6.16
 , we can see the effect of the
 shell2D()
 operation on a 2D sketch. The image on the left is the shape we created in

 Chapter 4

 ,
 Getting Started with OpenSCAD
 , for the PVC hook. Applying the
 shell2D()
 and
 gridpattern()
 operations on this shape creates what we see on the right side:

 [image: Figure 6.16 – The before and after shell2D() and gridpattern() operations

]

 Figure 6.16 – The before and after shell2D() and gridpattern() operations

 To create the

 shape on the right, follow

 these steps:

 	
 Download and install the Round Anything library from this URL:
 https://openscad.org/libraries.html
 .

 	
 Create a new design with the following code:
 use <Round-Anything/roundAnythingExamples.scad>

 shell2d(0, -5)

 {

 intersection()

 {

 translate([20,0])

 circle(d=80);

 translate([30,0])

 square([60, 70], center=true);

 }

 gridpattern(iter=50);

 }

 In this code, we create
 square
 with one rounded side using the
 intersection()
 operation. We then wrap that inside the
 shell2d()
 operation with offset values of
 0
 and
 -5
 . This defines the thickness of the shell (negative numbers create

 the shell inward, and

 positive numbers outward). For these numbers, we will create a shell with an inside wall thickness of
 5
 mm. We then add
 gridpattern(iter=50);
 , which creates a pattern inside our shape.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that the pattern looks like the pattern on the right side in
 Figure 6.16
 .

 	
 To experiment further, comment out the
 gridpattern()
 operation:
 //gridpattern(iter=50);

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that the 2D shape is a shell with a value of 5 mm from the outside edge inward:

 [image: Figure 6.17 – The shape after the shell2D() operation without gridpattern()

]

 Figure 6.17 – The shape after the shell2D() operation without gridpattern()

 There is much more

 functionality to the

 Round Anything library than we have touched on. What is important to gain from this exercise is the power that this external library can bring to our designs.

 We will now look at a library that will build enclosures for us.

 Mark's Enclosure Helper

 With this library, we

 can easily create enclosures for our projects with a few lines of code. We can make enclosures

 with interlocking rims, snap-fit enclosures, and rounded corners.

 For our example, we will create a simple hinged enclosure with a few lines of code. To create our hinged box, follow these steps:

 	
 Download and install the Mark's Enclosure Helper library from this URL:
 https://openscad.org/libraries.html
 . Be sure to rename the folder from
 MarksEnclosureHelper-master
 to
 MarksEnclosureHelper
 .

 	
 Create a new design with the following code:
 include <MarksEnclosureHelper/hingebox_code.scad>

 hingedbox(box_def);

 hinge_points = [0.5];

 hinge_len = 20;

 What we have done here is define a standard hinged box enclosure. It may seem odd that

 we are simply setting variables without passing them into a module or operation, but

 take note of
 include
 at the top. This library relies heavily on code that is written outside of modules. If we were to replace
 include
 with
 use
 , the code will not work. The
 hinge_points
 variable defines where the hinges are located, with the
 0.5
 value putting them in the middle of the enclosure. The
 hinge_len
 variable defines the size of the hinge, which we set to
 20
 .

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe the enclosure created:

 [image: Figure 6.18 – The enclosure generated using the Mark's Enclosure Helper library

]

 Figure 6.18 – The enclosure generated using the Mark's Enclosure Helper library

 A common task among makers with 3D printers is creating enclosures for various projects. Having a library that does this with ease is a great tool to have.

 Now that we

 know how to create

 quick enclosures, let's turn our attention to creating screws and bolts that we can use in our designs.

 The OpenSCAD threads.scad module

 The OpenSCAD
 threads.scad
 library is designed to be an efficient way to generate bolts, threaded

 rods, and nuts

 that we can use in our projects.

 In our example, we will create a 25 mm M10 bolt with a couple of lines of code. Let's get started:

 	
 Download and install the OpenSCAD
 threads.scad
 library from this URL:
 https://openscad.org/libraries.html
 .

 	
 Create a new design with the following code:
 use <threads.scad>

 MetricBolt(10, 25, tolerance=0.4);

 This code couldn't be simpler. We pass in
 10
 for the diameter and
 25
 for the length. We can adjust
 tolerance
 if we are finding our 3D prints of this bolt too tight or too loose.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that an M10 25 mm bolt is generated:

 [image: Figure 6.19 – An M10 25 mm bolt generated from the OpenSCAD threads.scad library

]

 Figure 6.19 – An M10 25 mm bolt generated from the OpenSCAD threads.scad library

 	
 As we can see in the first line of the code in
 Step 2
 , the
 threads.scad
 library is

 brought into

 our program with the
 use
 command. If we were to change this to
 include
 , we would see a demo of the library. To verify this, change the code to the following:
 include <threads.scad>

 MetricBolt(10, 20, tolerance=0.4);

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that many parts are generated, including our M10 25 mm bolt:

 [image: Figure 6.20 – A generated demo of parts from the OpenSCAD thread.scad library

]

 Figure 6.20 – A generated demo of parts from the OpenSCAD thread.scad library

 Now that we

 can see there is an

 easy way to generate threaded nuts and bolts, let's turn our attention to a library that generates smooth basic objects for us.

 The OpenSCAD smooth primitives library

 This library provides common primitive shapes with additional parameters to smooth out the shape. As many

 of us know, it is not always easy to round off or smooth an edge of a common shape

 in OpenSCAD. Although this library is not vast, it does provide a few useful shapes that we can implement in our designs.

 For our example, we will look at
 SmoothCylinder
 . To explore this, follow these steps:

 	
 Download and install the OpenSCAD smooth primitives library from this URL:
 https://openscad.org/libraries.html
 .

 	
 Create a new design with the following code:
 use<smooth_prim.scad>

 SmoothCylinder(10, 30, 5);

 In the code, we are creating
 SmoothCylinder
 with a radius of
 10
 mm, a length of
 30
 mm, and a smoothing radius of
 5
 mm.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that a cylinder with rounded edges is rendered:

 [image: Figure 6.21 – SmoothCylinder generated with the OpenSCAD smooth primitives library

]

 Figure 6.21 – SmoothCylinder generated with the OpenSCAD smooth primitives library

 It is easy to see how we can use
 SmoothCylinder
 in our OpenSCAD designs and how easy it is to create

 one. For example, by

 cutting
 SmoothCylinder
 in half and hollowing it out, we can create a bell jar-style cover for a project.

 Now that we have a deeper understanding of how to use external libraries, let's create one of our own. We will use the code we wrote to create the desk drawer in the
 Using the BOSL to design a desk drawer
 section.

 Creating our own OpenSCAD library

 One way to turn our desk drawer code into a library file is to add it to our OpenSCAD installation's
 libraries
 directory. We

 can open this location on our computer by clicking on
 File
 |
 Show Library Folder...
 in OpenSCAD.

 Before we do that, we should take note of how we will be using this library. If we were to simply copy the code as we left it in the
 Using the BOSL to design a desk drawer
 section, we could see the whole drawer with the sliders generated. This would happen when using an
 include
 statement for importing:

 include <desk_drawer.scad>

 This is due to the non-module code at the end of the file that creates the drawer and the sliders we added in the
 Using the BOSL to design a desk drawer
 section. We will, however, be able to change the size of the drawer and sliders, as we will have access to the non-module variables declared at the beginning of the
 desk_drawer.scad
 library file. This may seem like the way we should approach creating our own OpenSCAD library file. However, it would make little sense when it comes to 3D printing, as our 3D file export (
 .stl
 ,
 .3mf
) would have both the drawer and the sliders together. This would prove difficult to 3D-print as separate parts.

 Another solution is to bring our library file into our new file with the
 use
 statement:

 use <desk_drawer.scad>

 With this approach, we solve the issue of the drawer and sliders rendered together, but we do not have access to the variables that would allow us to change the size of the drawer. Also, we would expect the user of this library to know which modules to call to build the various components of the drawer, such as
 create_tray()
 and
 create_rail()
 , and the corresponding
 mirror
 operation for creating the opposite side rail. The drawer would always be the size set by the variables at the beginning of the file unless we changed the input parameters for the modules to accept values for
 length
 ,
 width
 , and
 height
 . This would add extra complexity for anyone using this library.

 The best solution is to modify our file and instruct our user to use our library like any other OpenSCAD library by using the
 include
 statement.

 Let's do just that:

 	
 Create a copy of the
 desk_drawer.scad
 file and call it
 desk_drawer_lib.scad
 .

 	
 Save
 desk_drawer_lib.scad
 in the OpenSCAD
 libraries
 folder.

 	
 In
 desk_drawer_lib.scad
 , remove all the non-module code from the bottom of the file. Do not remove the variable declarations from the top of the file.

 	
 We will now create

 two new modules that will make using this library easier. We will start with a module to create the drawer. Add the following to the bottom of the code:
 module create_drawer()

 {

 create_tray();

 create_rail();

 mirror([1,0,0])create_rail();

 create_handle(10);

 }

 	
 To create the sliders at the side of the drawer, we will add a new module. Add the following module to the bottom:
 module create_sliders(offset=0.4)

 {

 create_slider(offset);

 mirror([1,0,0])create_slider(offset);

 }

 	
 Take note of the
 plural
 in the name of our new module and the default value of
 0.4
 for
 offset
 . This will make the library a little easier to use, as the user will not have to remember to supply an
 offset
 value. For good measure, we should add a default value to the original
 create_slider()
 module so that it looks like the following:
 module create_slider(offset=0.4)

 {

 base=20;

 translate([width/2+(rail_size+base),0,

 -rail_size/2])

 rotate([0,-90,0])

 slider(l=length,h=rail_size,base=base,

 wall=4,slop=offset);

 }

 This new
 offset
 value

 makes the library a little easier to use for calls to
 create_slider()
 . We use
 create_slider()
 when we need to generate a single slider.

 	
 We are now ready to use our new library. Create a new file in OpenSCAD with the following code:
 include <desk_drawer_lib.scad>

 width=500;

 create_drawer();

 create_sliders();

 With this code, we import our library, and then we set the
 width
 value to
 500
 . We then create the drawer and the sliders.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that a new desk drawer complete with sliders is generated and that its width is greater than its length:

 [image: Figure 6.22 – A wide drawer generated with the custom OpenSCAD library

]

 Figure 6.22 – A wide drawer generated with the custom OpenSCAD library

 By arranging our library code this way, it becomes easy to generate objects for 3D printing. For

 example, if we wanted to print a single slider, we could generate one with this code:

 create_slider();

 	
 Click on
 Render
 or hit
 F6
 on the keyboard (or
 F5
 to preview if the design is taking too long to render). Observe that a single slider is generated:

 [image: Figure 6.23 – A single slider generated with the custom OpenSCAD library

]

 Figure 6.23 – A single slider generated with the custom OpenSCAD library

 	
 To generate a
 .stl
 file for 3D printing, click on the
 Export as STL
 button in the editor or hit
 F7
 on the keyboard.

 	
 Save the
 .stl
 file. We

 can view it with an STL viewer, such as 3D Viewer in Windows or Preview in macOS:

 [image: Figure 6.24 – A slider as a .stl view in 3D Viewer in Windows

]

 Figure 6.24 – A slider as a .stl view in 3D Viewer in Windows

 With our object stored as a
 .stl
 file, we can then proceed to load it into a slicer program, such as Cura, and prepare it for 3D printing.

 Having our desk drawer code as an installed library means we can utilize it to generate desk drawers easily. This allows

 us to place such a component in larger designs – for example, a design of an entire workshop.

 The ability to see our designs before construction is the power of OpenSCAD and CAD design in general. It limits any measurement mistakes and, thus, any post-construction modifications.

 Summary

 In this chapter, we introduced external libraries to our designs. We were able to use the BOSL to design a desk drawer that slides on sliders under our desk. We also explored many of the libraries available from the OpenSCAD website, noting the design inspirations and strengths of the libraries.

 We were able to then take the code written for our desk drawer design and implement it as an OpenSCAD library. As we saw, doing this greatly simplifies future designs. It allows us to design something rather complex by breaking it down into separate components.

 With this chapter, we come to the end of the second part of this book,
 Learning OpenSCAD
 , where we explored OpenSCAD from basic to more complex concepts. We will use this knowledge in the third part of this book,
 Projects
 , as we use OpenSCAD to design and then bring our designs to life through 3D printing.

 Part 3: Projects

 Now that we understand 3D printers and 3D design, let's start to create some objects of our own. Our projects will start off with a simple 3D printed name badge before we introduce more advanced design concepts to build a riser for our laptop. We will increase the complexity by creating a model rocket from scratch, building it around a paper tube from a roll of paper towels.

 In this part, we cover the following chapters:

 	

 Chapter 7

 ,
 Creating a 3D-Printed Name Badge

 	

 Chapter 8

 ,
 Designing and Printing a Laptop Stand

 	

 Chapter 9

 ,
 Designing and Printing a Model Rocket

 Chapter 7

 : Creating a 3D-Printed Name Badge

 In
 Part 1
 ,
 Exploring 3D Printing
 , we covered the basics of 3D printing. We looked at the various components that make up a 3D printer and had a brief overview of the several types of materials we can print with. In
 Part 2
 ,
 Learning OpenSCAD
 , we jumped into OpenSCAD by starting out with simple concepts before looking into modules and libraries. In
 Part 3
 ,
 Projects
 , we will combine what we learned from the first two parts of the book and go from OpenSCAD design to 3D-printed objects.

 Part 3
 ,
 Projects
 , starts with this chapter, where we will create a 3D-printed name badge to be worn at conventions or inside shops. We will design the name badge in OpenSCAD before importing our design into a slicer program. We will then proceed to print out our design.

 In this chapter, we will cover the following topics:

 	Creating text for our 3D-printed name badge

 	Adding a base plate to our 3D-printed name badge

 	Printing out our 3D-printed name badge

 Technical requirements

 The following is required to complete the chapter:

 	Any late-model Windows, macOS, or Linux computer that can install OpenSCAD and Cura.

 	
 3D printer—any
 fused deposition modeling
 (
 FDM
) printer should work; however, the Creality Ender 3 V2 is the printer used for our example.

 	Epoxy glue.

 	Brooch bar pin, as depicted in the following picture, for attaching our 3D-printed name badge to a shirt or jacket:

 [image: Figure 7.1 – Brooch bar pin

]

 Figure 7.1 – Brooch bar pin

 The code and images for this chapter can be found here:

 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter7

 Creating text for our 3D-printed name badge

 In

 Chapter 5

 ,
 Using Advanced Operations of OpenSCAD
 , we extruded text for our
 Thumbs Up Award
 design. Our focus was on creating a dynamic backing plate based on the size of the text, thus we limited our exposure of OpenSCAD's
 text
 operation to a monospaced font with default alignment and size settings.

 In this section, we

 will look more closely at the
 text
 operation and at ways that would make our text curve around shapes. Let's start by taking a closer look at the
 text
 operation.

 Understanding the OpenSCAD text operation

 At the time

 of writing, the OpenSCAD
 text
 operation

 has 10 parameters that can be set. These include parameters for font, vertical and

 horizontal alignment, as well as the size of text and the spacing between letters. A full list

 of these parameters can be found here:
 https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Text
 .

 In this section, we will look at using a specialized font, letter spacing, font size, and text direction.

 Using a specialized font

 Specialized fonts

 give us the opportunity to add a little something extra to our designs. We may find many such fonts installed on our computer already; however, an interesting font that many of us may not have installed is the Nasalization font made by Raymond Larabie.

 As its name implies, the

 Nasalization font is a set of characters that resemble the
 National Aeronautics and Space Administration
 (
 NASA
) "worm" logo

 from the 1970s. In this section, we will download the font and test it out in OpenSCAD.

 The Worm versus the Meatball

 The original NASA logo featured two planets and a red chevron and was affectionately called

 the "meatball" logo. Considered too cluttered by the 1970s (and with a little push from a Nixon-era design improvement program), a more simplified "worm" logo was developed. However, not everyone at NASA liked the new design, and thus it was retired in 1992. The "worm", however, made a comeback and was featured in a SpaceX Falcon 9 launch.

 We will start by downloading and unzipping the font, as follows:

 	
 Navigate

 to the following website and click on the
 Download
 link on the right-hand side:
 https://www.dafont.com/nasalization.font
 .

 	
 We will install the font in our OpenSCAD libraries folder. In OpenSCAD, click on
 File
 |
 Show Library Folder...
 to open the OpenSCAD libraries folder.

 	
 Create a new folder inside the libraries folder and call it
 fonts
 .

 	
 Unzip the
 nasalization.zip
 file.

 	
 Copy the
 nasalization-rg.otf
 file into the
 fonts
 folder.

 	
 Create a new OpenSCAD file and type the following code into the editor:
 use <fonts/nasalization-rg.otf>

 text("NASA", spacing=1.5, font="Nasalization:style=Regular");

 What we are doing here is loading the Nasalization font into our program with the
 use
 command. We then create text using the
 text
 operation, deploying

 the
 Nasalization
 font with a
 Regular
 style. We also set
 spacing
 to
 1.5
 to give our design a less cluttered look.

 	
 Click on
 Preview
 or hit
 F5
 on the keyboard. Observe here that we have recreated the NASA "worm" logo:

 [image: Figure 7.2 – NASA "worm" logo made with Nasalization font and OpenSCAD

]

 Figure 7.2 – NASA "worm" logo made with Nasalization font and OpenSCAD

 Now that we know how to add a specialized font to OpenSCAD, let's investigate a few text attributes we may modify.

 Changing the size and direction of text

 A couple

 more parameters that we can modify with the
 text
 operation include the
 size
 and
 direction
 parameters. As their names imply,
 size
 controls the size of the text, and
 direction
 controls the direction.

 Let's explore these parameters by doing the following:

 	
 Modify the code so that it looks like this:
 use <fonts/nasalization-rg.otf>

 text("NASA", direction="ttb", size=100, font="Nasalization:style=Regular");

 Let's start with
 direction
 . The

 values we may choose for direction are the default
 ltr
 (left-to-right),
 rtl
 (right-to-left),
 ttb
 (top-to-bottom), and
 btt
 (bottom-to-top). We are setting this value to
 ttb
 , which will create vertical text. We are also setting
 size
 to
 100
 , which is 10 times the default.

 	
 Click on
 Preview
 or hit
 F5
 on the keyboard. Observe here that the direction of the text, as well as its size, has changed:

 [image: Figure 7.3 – Vertical NASA "worm" logo made with Nasalization font and OpenSCAD

]

 Figure 7.3 – Vertical NASA "worm" logo made with Nasalization font and OpenSCAD

 Now that we have a better understanding of the
 text
 operation, let's look at how we can curve text in OpenSCAD.

 Making text curve in OpenSCAD

 Bending

 or curving text in an arch is a common effect used in design. Bending

 or curving text may be used to draw attention to a part of our design, such as a

 name. In this section, we will create a module to bend text in a circular pattern. We will start off by learning how to analyze each letter in a text string.

 Finding the first letter in a string

 For text

 strings in OpenSCAD, we can access each letter using an index. We use open and closed square brackets to indicate an index. To test this out, do the following:

 	
 Create a new OpenSCAD file and type in the following code:
 test_text = "Hello OpenSCAD";

 echo(test_text[0]);

 As with many programming languages, OpenSCAD uses zero as the first index position. With our code, we are creating a string called
 Hello OpenSCAD
 and are echoing out the first letter using the
 [0]
 index.

 	
 Click on
 Preview
 or hit
 F5
 on the keyboard. Observe here that the letter
 H
 is shown in the console:

 [image: Figure 7.4 – The first letter of "Hello OpenSCAD" echoed in the console

]

 Figure 7.4 – The first letter of "Hello OpenSCAD" echoed in the console

 Now that we understand how to find an individual letter from a text string in OpenSCAD, let's now explore how to iterate so that we can cycle through the text.

 Using a for loop to cycle through text

 As with

 many programming languages, OpenSCAD offers functionality for iteration in the form of a
 for
 loop. Using a
 for
 loop, we can cycle through the letters of a text string. Let's learn how to do

 this with a simple example, as follows:

 	
 Create a new OpenSCAD file and type in the following code:
 test_text = "Hello OpenSCAD";

 for(i=[0:len(test_text)-1])

 {

 echo(test_text[i]);

 }

 Before we run this code, let's examine it closely. We start off by creating a string called
 test_text
 and setting it to the value
 Hello OpenSCAD
 . In the next line, we set a
 for
 loop to count from
 0
 to a value equal to the length of the
 test_text
 string minus
 1
 and assign this value to the
 i
 variable for every iteration through the loop. For our example, the iteration would happen 14 times. In the loop, we use
 echo
 to print the letter at the
 i
 position of
 test_text
 to the console.

 	
 Click on
 Preview
 or hit
 F5
 on the keyboard. Observe that each letter of
 test_text
 is printed out one by one in the console:

 [image: Figure 7.5 – Letters echoed to the console

]

 Figure 7.5 – Letters echoed to the console

 Why Do We Subtract 1 from the Length of test_text?

 With many programming languages, when iterating through a list or string, we start at index
 0
 and stop at the value that is one less than the length. We do this using a less-than (
 <
) operator in the
 for
 statement. This makes sense with zero-based indexes as the value of the length of an array or string—or, in our case, the number of characters in the text—is not the same as the last index value. This is due to us starting at
 0
 for the first index and not
 1
 . With OpenSCAD, we do not have the option of using a less-than (
 <
) operator in our
 for
 loop. Thus, we must subtract
 1
 from the length of
 test_text
 so that we can stop our iteration on the last letter of
 test_text
 .

 Now that we understand how to iterate through a string of text in OpenSCAD, let's move on to rotating the text by positioning each letter individually. We will create a module to do just that.

 Creating a rotate_text() module

 To rotate

 a string of text in OpenSCAD, we will create a module to position each character based on the parameters we pass in. We will name the new module
 rotate_text()
 and experiment with the parameters before creating a text section for our name badge.

 Let's get started, as follows:

 	
 Create a new OpenSCAD file and type in the following code:
 module rotate_text(display_text,

 text_size=10,

 distance=20,

 rotation_value=360,

 tilt=0)

 {

 rotate([0,0,tilt])

 for(i=[0:len(display_text)-1])

 {

 rotate([0,0,- i*rotation_value/

 len(display_text)])

 translate([0,distance,0])

 text(display_text[i],

 font="Impact:style=Regular",

 size=text_size,

 halign="center");

 }

 }

 This module takes in five parameters, with four having default values. We will start our analysis of the
 rotate_text()
 module by passing in only the first parameter.

 	
 Type the

 following code below the module code:
 rotate_text("HelloOpenSCAD");

 What we are doing here is passing the
 HelloOpenSCAD
 string into
 rotate_
 text()
 for the value of
 display_text
 . We are leaving the other four parameters at their default settings. We leave out spacing in our string to create the desired effect.

 	
 Click on
 Preview
 or hit
 F5
 on the keyboard. Observe here the circle of text created:

 [image: Figure 7.6 – Circle of text created using the rotate_text() module

]

 Figure 7.6 – Circle of text created using the rotate_text() module

 Our code

 uses the Impact font, which should be found on most operating systems (feel free to use the Nasalization font from the previous section). As we can see, using default parameters gives us a circle of text, which starts at the zero position of the
 y
 axis. To fully utilize the
 rotate_text()
 module, let's look at the
 text_size
 ,
 distance
 ,
 rotation_value
 , and
 tilt
 parameters.

 Modifying the default parameters in the rotate_text() module

 By modifying

 the default parameters, we can create many different designs with the
 rotate_text()
 module. We will start by modifying the
 distance
 parameter. To do this, we proceed as follows:

 	
 Modify the code that calls
 rotate_text()
 so that it looks like this:
 rotate_text("HelloOpenSCAD", distance=60);

 The
 distance
 parameter sets the distance from the center and, thus, the radius of the invisible circle that the text is wrapped around. With the value of
 60
 , we triple the size of the default parameter.

 	
 Click

 on
 Preview
 or hit
 F5
 on the keyboard. Observe here that the text has spread out:

 [image: Figure 7.7 – Modifying the distance property for rotate_text()

]

 Figure 7.7 – Modifying the distance property for rotate_text()

 	
 We will now modify the
 text_size
 parameter to change the size of the text. Modify the code so that it looks like this:
 rotate_text("HelloOpenSCAD", text_size=15, distance=60);

 	
 Click

 on
 Preview
 or hit
 F5
 on the keyboard. Observe here that the text is larger:

 [image: Figure 7.8 – Modifying the text_size property for rotate_text()

]

 Figure 7.8 – Modifying the text_size property for rotate_text()

 	
 The
 rotation_value
 parameter defaults to
 360
 , which creates a full circle of text. Changing this value to anything less than
 360
 will create an arch instead of a circle. Modify the code so that it looks like this:
 rotate_text("HelloOpenSCAD", 15, 60, 180);

 We can take away the parameter names as we are setting the parameters in order. The value of
 180
 should create a half-circle arch of our text.

 	
 Click

 on
 Preview
 or hit
 F5
 on the keyboard. Observe here that we have indeed created a half-circle arch of our text:

 [image: Figure 7.9 – Arch of text using the rotate_text() module

]

 Figure 7.9 – Arch of text using the rotate_text() module

 	
 The final parameter is
 tilt
 . This parameter sets the starting point of our text and defaults to
 0
 , which is the
 0
 value on the
 x
 axis. Modify the code to add the
 tilt
 parameter, as follows:
 rotate_text("HelloOpenSCAD", 15, 60, 180, 83);

 The value of
 83
 was determined by trial and error. This value may be different depending on the font and other factors.

 	
 Click

 on
 Preview
 or hit
 F5
 on the keyboard. Observe here that our arch of text has been rotated to the left:

 [image: Figure 7.10 – Arch of text rotated

]

 Figure 7.10 – Arch of text rotated

 Now that we have a module for rotating text, it's time to put it to use to create arched text for our 3D-printed name badge project.

 Creating a name tag text generator module

 In this

 section, we will create the text portion of the 3D-printed name badge with the company name
 Packt Pub
 (shameless plug). We will create a new module to do this by doing

 the following:

 	
 Using the code from the
 Making text curve in OpenSCAD
 section, add the following module after the
 rotate_text()
 module:
 module create_packt_name_tag_text(

 name,

 name_size=20,

 scale_factor=1)

 {

 scale([scale_factor,

 scale_factor,

 scale_factor])

 union()

 {

 rotate_text("PACKT", 10, 30, 75, 30);

 rotate_text("PUB", 10, -40, -75, -23);

 text(name, size=name_size,

 font="Impact:style=Regular",

 halign="center",

 valign="center");

 }

 }

 What this code does is create the text part of a name tag for the company
 Packt Pub
 . The word
 PACKT
 is rotated over the top of the name. The word
 PUB
 is rotated below the name by virtue of a negative value for distance, rotational value, and tilt in the call to the
 rotate_text()
 module.

 	
 Before

 we can run this module, we must make a call to it in our code. Delete all

 non-module code (code that sits outside of modules) and type in the following code:
 create_packt_name_tag_text("Bob Writer");

 The
 create_packt_name_tag_text()
 module takes in three parameters—the
 name
 value to be displayed, the size of the text of the name (
 name_size
), and a scale factor (
 scale_factor
) to adjust the overall size of the name tag text. As
 name_size
 and
 scale_factor
 have default values, we only need to pass in the
 name
 parameter. We are passing in the name
 Bob Writer
 . Feel free to pass in your own name.

 	
 Click on
 Preview
 or hit
 F5
 on the keyboard. Observe the following:

 [image: Figure 7.11 – Packt Pub name badge text

]

 Figure 7.11 – Packt Pub name badge text

 You

 might

 have noticed that the name
 Bob Writer
 is perfectly centered with the arched text on the top and bottom. This is due to the setting of
 halign
 (horizontal alignment) and
 valign
 (vertical alignment) to
 center
 . Parameters for
 rotate_text()
 and
 font
 may be modified to achieve the desired effect.

 	
 As we will be using this code to build our 3D-printed name badge, we should save it to our OpenSCAD libraries folder. Click on
 File
 |
 Save As ...
 and save the file as
 name-badge-text.scad
 in the OpenSCAD libraries folder (
 File
 |
 Show Library Folder...
).

 Creating customized text is the first part of making our 3D-printed name badge. As we can

 see, with a few

 simple modules, we are able to bend text to make our design more appealing. The parameter values used have been derived by trial and error. By parametrizing our code, we can make modifications to suit any company or employee name.

 In the next section, we will move on to creating a base for our 3D-printed name badge.

 Adding a base plate to our 3D-printed name badge

 To complete

 our 3D-printed name badge, we require a base plate for the text. We will start with a basic shape before we implement

 the code to build a base plate with a series of modules. We will then add our text to complete the design of the 3D-printed name badge. Let's start with a module to create a basic 2D shape.

 Creating our first shape

 We

 will start off the design of our base plate with a simple 2D design. As with the code we covered in the
 Creating our PVC pipe hook
 section of

 Chapter 4

 ,
 Getting Started with OpenSCAD
 , we take the intersection of a circle and square to give us a basic first shape. We will put this code inside a module. Let's get started, as follows:

 	
 Create a new OpenSCAD file and type in the following code:
 module create_first_shape()

 {

 intersection()

 {

 translate([20,0])

 circle(d=85);

 translate([30,0])

 square([60, 70],center=true);

 }

 }

 create_first_shape();

 The

 code to create our first shape is wrapped up in the
 create_first_shape()
 module. The
 translate
 values push the shape to one side of the
 x
 axis. The values used to define the diameter of the circle and the size of the square may be modified to create a desired effect. The module is called with this line of code:
 create_first_shape();
 .

 	
 Click on
 Preview
 or hit
 F5
 on the keyboard. Observe here that a basic shape is created:

 [image: Figure 7.12 – Shape created from the create_first_shape() module

]

 Figure 7.12 – Shape created from the create_first_shape() module

 As we can see, our

 first shape sits on one side of the
 x
 axis. This sets up the shape to be mirrored later. Before we do that, we will create a module to represent the brooch pin for our 3D-printed name badge. Let's get started.

 Adding an indent for the brooch pin

 As we

 will be gluing the brooch pin to the back of the plate, a good thing to assist us is an indent or a pocket in which we can set the pin. A 1 mm indent on the back of the 3D-printed name badge should be sufficient to help us position and glue the brooch pin in place. We will create a module to do this.

 Due to the different sizes of brooch pins, we will accept parameters in our module. For the brooch pin shown in
 Figure 7.1
 , the width is 32 mm and the height is 5 mm. Let's start by adding code for the new module, as follows:

 	
 Below the
 create_first_shape()
 module, add the following code:
 module create_brooch_indent(width, height)

 {

 translate([0,0,-1])

 color("#dc143c")

 linear_extrude(2)

 square([width, height], center=true);

 }

 With this code, we create a module called
 create_brooch_indent()
 , in which we take in
 width
 and
 height
 parameters. We use these parameters to

 create a square, which is extruded to
 2
 mm, colored red (
 #dc143c
), and moved down in the
 z
 axis by
 1
 mm. We add color to highlight the indented region and move it down
 1
 mm to get a clean cut. Please note that color added to a shape only shows up in preview mode (F5).

 	
 Comment out the
 create_first_shape();
 code and add the following code:
 create_brooch_indent(32, 5);

 We are calling the
 create_brooch_indent()
 module with the values of
 32
 mm for the
 width
 value and
 5
 mm for the
 height
 value.

 	
 Click on
 Preview
 or hit
 F5
 on the keyboard. Observe here that a red shape representing the brooch pin is created:

 [image: Figure 7.13 – Brooch pin indent shape

]

 Figure 7.13 – Brooch pin indent shape

 With the
 create_first_shape()
 and
 create_brooch_indent()
 modules written, it's

 now time to create a module that will put all the code we've written together, to make the base plate for our 3D-printed nameplate.

 Putting the first shape and indent together

 We will

 start by wrapping the
 create_first_shape()
 and
 create_brooch_indent()
 modules in a new module called
 create_base_plate()
 . We will then combine the name tag text with the base plate to finish our design before exporting it to a
 .stl
 file for 3D printing.

 Coding the create_base_plate() module

 We will

 code the
 create_base_plate()
 module using the
 create_first_shape()
 and
 create_brooch_indent()
 modules. With this new module, we will have all the code needed to create a base plate for our 3D-printed name badge. To create the
 create_base_plate()
 module, we do the following:

 	
 Below the
 create_brooch_indent()
 module, add the following code:
 module create_base_plate(

 thickness,

 scale_factor=1)

 {

 difference()

 {

 linear_extrude(thickness)

 scale([scale_factor,

 scale_factor,

 scale_factor])

 union()

 {

 create_first_shape();

 mirror([1,0,0])create_first_shape();

 circle(d=90);

 }

 create_brooch_indent(32, 5);

 }

 }

 At the

 heart of the
 create_base_plate()
 module is the union of two calls—the first one is to the
 create_first_shape()
 module, with the second one modified by a
 mirror
 operation. A circle with a diameter of
 90
 is added. A
 scale
 operation controls the size of the base plate. Of note is the absence of the
 create_brooch_indent()
 module from the
 scale
 operation as the size of the brooch pin is a set size.

 	
 To call the
 create_base_plate()
 module, remove all non-module related code and add the following code:
 create_base_plate(2.5, 0.7);

 The
 create_base_plate()
 module takes in two parameters—
 thickness
 (thickness of the base plate) and
 scale_factor
 . We pass in a value of
 2.5
 for the
 thickness
 parameter, and even though
 scale_factor
 has a default parameter of
 1
 , we pass in a value of
 0.7
 to make the

 ratio of the base plate to the brooch pin smaller.

 	
 Click on
 Preview
 or hit
 F5
 on the keyboard. Rotate the resulting shape to view the indent for the brooch pin, as illustrated here:

 [image: Figure 7.14 – Base plate with brooch pin indent

]

 Figure 7.14 – Base plate with brooch pin indent

 	
 As we did with the
 name-badge-text.scad
 file, we will add this code to our library. Click on
 File
 |
 Save As ...
 and save the file as
 base-plate.scad
 in

 the OpenSCAD libraries folder (
 File
 |
 Show Library Folder...
).

 With our base plate code saved to the OpenSCAD libraries folder, creating our 3D-printed name badge simply involves importing
 name-badge-text.scad
 and
 base-plate.scad
 into a new file and utilizing the modules these files provide us.

 Let's do that now.

 Combining the text with the base plate

 To finalize

 our design, we will create a new file and import the libraries for generating the name tag text and the base plate. To do this, we proceed as follows:

 	
 Create a new OpenSCAD file and type in the following code:
 use<base-plate.scad>

 use<name-badge-text.scad>

 color("blue")

 create_base_plate(2.5, 0.7);

 color("gold")

 translate([0,0,2])

 linear_extrude(2)

 create_packt_name_tag_text("Bob Writer",

 scale_factor = 0.65);

 In our code, we import the libraries to create a base plate and name tag text with the
 use
 keyword. We then create a base plate with a thickness of
 2.5
 mm and at a scale of 70%. The base plate is colored blue for effect. We then create a
 Packt Pub
 name tag using the
 create_packt_name_tag_text()
 module for the name
 Bob Writer
 , at a scale of 65%. Notice how we must specify the parameter name for
 scale_factor
 as we are not listing the parameters in order. The text is colored gold for effect, moved up
 2
 mm in the
 z
 direction, and extruded to
 2
 mm. If we did not move the text up, then the brooch pin indent would be covered up.

 	
 Click

 on
 Preview
 or hit
 F5
 on the keyboard. Observe here that a
 Packt Pub
 name badge is displayed for the name
 Bob Writer
 :

 [image: Figure 7.15 – Packt Pub name badge for Bob Writer

]

 Figure 7.15 – Packt Pub name badge for Bob Writer

 With the design finalized, it's now time to export it to a
 .stl
 file to be used for 3D printing.

 Creating a file for 3D printing

 In this chapter, we

 have been previewing instead of rendering while creating our design. To export our design as a
 .stl
 file, we need to render it. To do so, proceed as follows:

 	
 Click on
 Render
 or hit
 F6
 on the keyboard. Observe here that after a short bit of time, our design is rendered and is in one color:

 [image: Figure 7.16 – Rendered Packt Pub name badge for Bob Writer

]

 Figure 7.16 – Rendered Packt Pub name badge for Bob Writer

 	
 To make use of our design in a slicer, we will export it as a
 .stl
 file. Click on
 File
 |
 Export
 |
 Export as STL…
 or hit
 F7
 on the keyboard. Give the file a name and save it to a location to be accessed by the slicer program.

 It's now time to 3D print our design. To do so, we will load the
 .stl
 file into Cura and adjust the settings accordingly.

 Printing out our 3D-printed name badge

 To print out

 our design, we will open the
 .stl
 file in Cura and adjust the settings accordingly. We will consider the material, the bed adhesion, and other settings. We will then generate G-code for the print job before we store it on a microSD card and load it into our Ender 3 V2 3D printer.

 We will start with loading our design and configuring the settings in Cura.

 Preparing our design for a print job

 We will

 print our name badge

 with two distinct colors as we want the name to stand out. This will require us to pause the print job and change out one

 color of
 polylactic acid
 (
 PLA
) for another. We will use support for the brooch pin indent (pocket).

 Before we can do all that, however, we need to load our
 .stl
 file into Cura. Let's do just that.

 Loading a file into Cura

 Loading a

 file into Cura is simple. Cura supports many different file formats, including
 .jpg
 and
 .png
 , for creating 3D prints from pictures. What we are interested in is the
 .stl
 file created from our design. To open our
 .stl
 file in Cura, we do the following:

 	
 In Cura, click on
 File
 |
 Open File(s)...
 from the top menu.

 	
 Navigate to the folder where the
 .stl
 file from our design is stored and click on the
 Open
 button.

 Observe here that our design sits centered on the build plate in Cura:

 [image: Figure 7.17 – Name badge design loaded into Cura

]

 Figure 7.17 – Name badge design loaded into Cura

 Now that

 we have our design loaded into Cura, it's time to modify the settings. We will start by loading a default slicer profile.

 Using default profiles

 For our

 projects, we will start with default templates for our slicer settings and then make modifications as needed. To select the default PLA setting in Cura, do the following:

 	In the top-middle section of the screen, click on the drop-down arrow to expand the dialog, as illustrated in the following screenshot:

 [image: Figure 7.18 – Selecting generic slicer templates

]

 Figure 7.18 – Selecting generic slicer templates

 	
 For
 Material
 , click

 on the drop-down arrow and select
 Generic
 |
 PLA
 .

 	
 For
 Nozzle Size
 , select
 0.4mm Nozzle
 .

 Now that we have the default slicer settings in place, it's time to modify them to our needs. We will start with temperatures.

 Setting temperatures

 The settings

 to control both the nozzle and bed temperatures in Cura sit under the
 Material
 tab. Getting the temperature settings right for the material we use can be a challenge. PLA melts at a lower temperature

 than
 Acrylonitrile Butadiene Styrene
 (
 ABS
) and
 Polyethylene Terephthalate Glycol
 (
 PETG
) but

 the temperature may vary between manufacturers (for information on the various materials for 3D printing, please refer to the
 Materials available for 3D printing
 section of

 Chapter 1

 ,
 Getting Started with 3D Printing
). Sticking with the same brand of filament is a good practice. We will be using two distinct colors of PLA from the same manufacturer in our example.

 To set temperatures, we do the following:

 	
 Click on the down arrow on the top right of the screen to display the
 Print
 settings.

 	
 Expand the
 Material
 section by clicking on the down arrow of the section.

 	Set the temperatures to the following values:

 [image: Figure 7.19 – Temperature settings for the Material section

]

 Figure 7.19 – Temperature settings for the Material section

 These

 settings may be modified based on the brand of PLA used. Generally, good quality can be achieved by keeping the temperature of the nozzle at the lower end to avoid the melted look that high nozzle temperatures may cause. However, care must be taken that the temperature is not too low so as to cause a jam.

 For our example, our hot end uses

 the
 Polytetrafluoroethylene
 (
 PTFE
) tube-to-nozzle design that comes standard with the Creality Ender 3 V2. This design works well for our purposes as PLA tends to jam when the PTFE tube does not extend directly to the nozzle. (Refer to the
 Upgrading the Ender 3
 section of

 Chapter 1

 ,
 Getting Started with 3D Printing
 for more information on PTFE tube-to-nozzle design). For PTFE tube-to-nozzle designs, it is a good practice to keep temperatures on the lower side to avoid melting the PTFE tube, which generally melts at the 230°C mark. Not only does a melted PTFE tube cause jams, but it may also release hazardous toxic fumes. Our nozzle temperature of 190°C allows us to avoid such issues.

 We set the bed temperature to 60°C. This should be sufficient to hold the PLA on the build plate. A too-high bed temperature softens PLA and may make removing any support material from our print difficult.

 With the temperatures set, it's time to add the support.

 Adding support material to our print job

 The indent or pocket we use for the brooch pin of our design requires support material. This is due to the layout of our object on the build plate. Although we could get away

 without support material, the indent would not be as clean as it could be, thus making it harder to slot the brooch pin into place.

 To add support material to our print job, we do the following:

 	
 Click on the down arrow on the top right of the screen to display the
 Print
 settings.

 	
 Expand the
 Support
 section by clicking on the down arrow of the section.

 	
 Check the
 Generate Support
 checkbox and select
 Normal
 for
 Support Structure
 , as illustrated in the following screenshot:

 [image: Figure 7.20 – Support section settings

]

 Figure 7.20 – Support section settings

 Leave all the other settings at their defaults.

 With support settings taken care of, it's time to move to the settings that will determine how our print sticks to the build plate during printing.

 Adjusting the Build Plate Adhesion settings

 One of the

 hardest things to get right with 3D printing is bed (build plate) adhesion or getting the prints to stick to the bed when we need them to stick and have them come off the bed when we need to remove them. Bed temperature is arguably the biggest factor in bed adhesion. Even though PLA may stick to the bed at room temperature, bringing up the bed temperature softens the PLA, which creates more adhesion.

 Another

 factor that affects bed adhesion is the
 Build Plate Adhesion
 settings. The settings available with
 Build Plate Adhesion
 are
 Skirt
 ,
 Brim
 ,
 Raft
 , and
 None
 , with all settings except for
 None
 using extra filament. Ideally, we would only need to use the
 None
 setting, as the filament would extrude perfectly at the start of the print job and our print would stick to the build plate as we need it to.

 Having the filament extrude a little bit through the nozzle before printing our object is a good practice, as any filament stuck to the nozzle from a previous print will be deposited on the build plate before printing the object. Also, freshly loaded filament may require a bit of extrusion before flowing nicely through the nozzle prior to printing the object. Extruding filament before printing an object "primes" the nozzle, giving the extrusion a running start. All the settings except for
 None
 may be used for this.

 For more information

 on
 Build Plate Adhesion
 settings, refer to the
 Build Plate Adhesion settings
 section of

 Chapter 3

 ,
 Printing Our First Object
 .

 For our print, we will use
 Skirt
 , as we want a good flow for the extrusion but do not require extra surface area on the build plate that
 Raft
 and
 Brim
 provide due to the shape of our object (short and flat).

 To set
 Build Plate Adhesion
 , do the following:

 	
 Expand the
 Build Plate Adhesion
 section by clicking on the down arrow of the section.

 	
 Set
 Build Plate Adhesion Type
 to
 Skirt
 , as illustrated in the following screenshot, and leave the other values at their default settings:

 [image: Figure 7.21 – Build Plate Adhesion settings

]

 Figure 7.21 – Build Plate Adhesion settings

 With our
 Build Plate Adhesion
 settings out of the way, it's time to look at postprocessing. With postprocessing, we will be able to pause our print so that we can swap out the filament for one of a different color.

 Adding Pause at height postprocessing

 Post-processing

 allows us to modify G-code generated for our print job. Functionality such as triggering a camera for time-lapse pictures may be implemented using postprocessing. For our purposes, we will use postprocessing to pause our print job so that we can change the filament for one with a different color. This will give

 us a 3D-printed name badge with text that is a different color than the base plate.

 To set
 Pause at height
 postprocessing, we do the following:

 	
 Click on
 Extensions
 |
 Post Processing
 |
 Modify G-Code
 to access the
 Post Processing Plugin
 page.

 	
 Click on the
 Add a script
 button.

 	
 Select
 Pause at height
 from the list.

 	Set the values to the following:

 [image: Figure 7.22 – Pause at height settings

]

 Figure 7.22 – Pause at height settings

 With

 these settings, the print job will stop at the height of
 3
 mm, where the

 print head is then parked at
 190
 mm in the
 x
 direction and
 190
 mm in the
 y
 direction. The nozzle temperature is set to 200°C. We add 10 degrees to soften up the PLA a little bit further for easier removal.

 We will now turn our attention to slicing our object into G-code and storing it onto a microSD card to run on our printer.

 Slicing our object

 With our object loaded, our settings modified, and our postprocessing inserted, it's time to slice our object and store the G-code generated onto a microSD card.

 To do this, we

 do the following:

 	Insert a microSD card into the slot on the computer. A USB or SD to microSD adapter may be required.

 	
 In Cura, observe the
 Slice
 button at the bottom-right side of the screen. The box to the left with
 1
 circled in red in the following screenshot indicates we are running one postprocessing event. Click on the
 Slice
 button:

 [image: Figure 7.23 – Cura Slice button

]

 Figure 7.23 – Cura Slice button

 	
 Observe that the time for the print job and the amount of material needed are displayed. As well, observe in the following screenshot that the
 Slice
 button turns into a button where we can select the location to store the G-code generated. Select
 Save to Removable...
 to save the G-code to the microSD card:

 [image: Figure 7.24 – Print job statistics and button to save G-code to microSD card

]

 Figure 7.24 – Print job statistics and button to save G-code to microSD card

 With the G-code saved onto the microSD card, it's now time to print out our object. Refer to

 Chapter 3

 ,
 Printing Our First Object
 to go

 through the steps to do this.

 Printing and finishing

 The

 print job will run until the
 z
 axis reaches
 3
 mm, as set up in the postprocessing. When it reaches this point, we do the following:

 	Observe that the print job is paused, and a message indicating such is displayed on the screen.

 	
 Observe that the print head has moved to the top right of the build plate and the temperature of the nozzle is 200°C. For our

 example here, we use a
 polyetherimide
 (
 PEI
) build plate:

 [image: Figure 7.25 – Paused print

]

 Figure 7.25 – Paused print

 	
 Using

 Chapter 3

 ,
 Printing Our First Object
 as a reference, change the filament to a filament of a different color.

 	Click on the control knob to continue the print.

 After the

 print job has finished, observe that our name badge has been created, with the letters having a different color than the base plate, as illustrated in the following picture:

 [image: Figure 7.26 – Finished print

]

 Figure 7.26 – Finished print

 As we can

 see, the clarity of the letters leaves much to be desired. This may be improved by using a 0.2 mm nozzle as opposed to a 0.4 mm nozzle. Our settings in Cura would have to change to reflect this.

 There is one thing left to do to complete our 3D-printed name badge, and that is to add a brooch pin to the back. This can be done easily using epoxy glue, as shown here:

 [image: Figure 7.27 – Completed 3D-printed name badge

]

 Figure 7.27 – Completed 3D-printed name badge

 We

 have created our first OpenSCAD designed object. Now that we have this experience behind us, in the next chapters, we will implement a little more complexity in our designs.

 Summary

 We started this chapter by looking more closely at the OpenSCAD
 text
 operation. We learned how to install and use a customized font as we recreated the NASA "worm" logo. From there, we explored how to change the size and direction of our text.

 We implemented a
 for
 loop to cycle through custom text so that we could curve it around an invisible circle. We created a specialized module to do this.

 From there, we created code to make a customized 3D-printed name badge using the curved text module and a module to create a base plate from a simple 2D design. We accounted for a brooch pin by providing an indent at the back of our name badge.

 We proceeded to use Cura to slice our design into G-code, which we loaded onto our 3D printer. This G-code produced a print job with a pause, to allow us to change the color of the PLA for effect.

 In the coming chapters, we will expand our knowledge of 3D design in OpenSCAD further as we build more complex objects. We will build a stand for a laptop in the next chapter.

 Chapter 8

 : Designing and Printing a Laptop Stand

 Laptop risers allow computer users to position their laptops higher on their desks, making their desk space more ergonomic. This is usually accompanied by an external keyboard, mouse, and screen, essentially turning a laptop into a dual monitor desktop computer.

 Although there are many laptop risers on the market, it would be nice to make a customized one for our needs. In this chapter, we will utilize some of the common OpenSCAD libraries to design a laptop riser, which we will then print out.

 In this chapter, we will cover the following:

 	Designing the frame in Inkscape and OpenSCAD

 	Designing the threaded rod in OpenSCAD

 	Printing out our laptop stand

 Technical requirements

 The following are required to complete the chapter:

 	Any late model Windows, macOS, or Linux computer that can install OpenSCAD and Inkscape.

 	A 3D printer with PLA – any FDM printer should work, however, the Creality Ender 3 V2 is the printer used for our example.

 	4 X M3 10mm bolts

 	A 3mm drill tap for making threaded holes, as shown here:

 [image: Figure 8.1 – 3mm drill tap

]

 Figure 8.1 – 3mm drill tap

 	M10 nylon cap nuts or another type of M10 nut, as shown here:

 [image: Figure 8.2 – M10 nylon cap nuts

]

 Figure 8.2 – M10 nylon cap nuts

 The code and images for this chapter can be found here:
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter8
 .

 Designing the frame in Inkscape and OpenSCAD

 Inkscape is a free and powerful design

 tool that we can use to create
 .svg
 files to import into

 OpenSCAD. In this section, we will

 download and install Inkscape. We will then take a very

 brief look at the tools

 we will be using. This will in no way be a comprehensive tutorial on Inkscape as it is a program that requires a fair bit of time to master.

 We will use Inkscape to

 design the sides, or the frame, of our

 laptop stand. We will then import the file

 into OpenSCAD and modify it using code. We will

 export the file to an
 .stl
 file, so that we can 3D print it. We will start by downloading and installing Inkscape.

 Downloading and installing Inkscape

 The current version

 of Inkscape as of this writing is 1.1.2. It can be downloaded from the Inkscape

 website –
 http://inkscape.org
 . There are versions

 for Linux, Windows, and macOS. There is an option to download the source code as well.

 To download and install Inkscape, we do the following:

 	
 Using a web browser, navigate to the Inkscape website at
 http://inkscape.org
 .

 	
 Click on
 Download
 |
 Current Version
 .

 	
 Select the appropriate version (
 GNU/Linux
 ,
 Windows
 ,
 macOS
) by clicking on the corresponding button.

 	
 Follow the steps to download and install. For example, in Windows, there is an option to download a
 64-bit
 or
 32-bit
 version. Clicking on either one of these will give another option for
 Installer in .exe format
 ,
 Windows Installer Package
 , or
 Compressed archive in 7z format
 . For our example, we will choose the
 64-bit
 Windows Installer Package
 .

 	Follow the usual steps to install the software.

 Now that we have Inkscape installed on our computer, it is time to take a brief look at the tools we will be using to create the frame of our laptop stand.

 Exploring Inkscape

 When running Inkscape

 for the first time, a
 Welcome!
 screen will be presented. To set up Inkscape so that we can start to design, do the following:

 	Open Inkscape by clicking on its shortcut.

 	
 Click on
 Save
 to use Inkscape with the default settings.

 	
 A screen describing the Inkscape organization and how to donate may pop up. Click on
 Thanks
 once the information has been reviewed.

 	
 Click on
 New Document
 to open a blank document.

 We should see a blank document. Before we start our design, we will set the canvas to the same size as the bed on the Ender 3 V2, so that we can view how our design will fit. To do this, we do the following:

 	
 From the top menu, click on
 File
 |
 Document Properties…
 .

 	
 Observe that the
 Document Properties
 dialog box pops up on the right side of the screen.

 	
 In the
 Custom size
 box, set
 Width
 to
 220
 mm and
 Height
 to
 220
 mm to correspond to the size of the Ender 3 V2 build plate, and press
 Enter
 :

 [image: Figure 8.3 – Setting a custom size in Inkscape

]

 Figure 8.3 – Setting a custom size in Inkscape

 	Observe that the size of the canvas has changed from a rectangle to a square. The canvas is now set to the same size as the Ender 3 V2 build plate.

 Now that we have the canvas size set, let's start the design of the frame for our laptop stand.

 Using Inkscape to design the frame

 The frame consists of two equal but mirrored triangular-type shapes, which make up the sides of our laptop stand. They are held in place by threaded rods, which we will design in the upcoming
 Designing the threaded rod in OpenSCAD
 section.

 We will use Inkscape to design

 the frame and expand our knowledge of Inkscape

 along the way. We will then import our Inkscape file into OpenSCAD where it will be used to create a 3D version of the frame. We will start with a basic shape.

 Creating the basic shape

 The design of the frame

 will start with a rectangle created with the rectangular tool in Inkscape:

 	Open up Inkscape with a new document.

 	
 Click
 R
 on the keyboard to draw a rectangle. Draw a rectangle of any size on the canvas (ignore rounded corners if present as we will be adjusting this property in
 Step 3
):

 [image: Figure 8.4 – Drawing a rectangle in Inkscape

]

 Figure 8.4 – Drawing a rectangle in Inkscape

 	
 Using the
 Change
 properties located at the top-left part of the screen, change the properties of the rectangle

 to the following:

 [image:]

 Figure 8.5 – Change properties for the rectangle

 W
 and
 H
 refer to the width and the height of the rectangle respectively. As we can see, our rectangle extends just outside of the canvas (the build plate size of the Ender 3 V2). This will not be a problem as the frame will be rotated to fit when we start to print out our design in the
 Printing out our laptop stand
 section. The
 Rx
 and
 Ry
 values refer to the roundness of the corners of our rectangle. Setting both values to
 10
 gives us the desired starting shape. Hit
 S
 on the keyboard to hide the
 Change
 properties and select the rectangle.

 	
 We will now cut the rectangle

 diagonally. Hit
 Ctrl
 +
 D
 on the keyboard to create a duplicate of the rectangle.

 	
 As we are now working with a duplicate rectangle, the
 Change
 properties do not show up in the top-left corner. Instead, we will resize the duplicate using the
 Width of selection
 and
 Height of selection
 properties in the top middle of the screen. Change these values to the following:

 [image: Figure 8.6 – Width and height settings for the duplicate rectangle

]

 Figure 8.6 – Width and height settings for the duplicate rectangle

 	We will use the duplicate rectangle to cut our original rectangle diagonally. To do this, we need to rotate and put the duplicate rectangle in place. Click on the duplicate to get rotation arrows:

 [image: Figure 8.7 – Rotating the duplicate

]

 Figure 8.7 – Rotating the duplicate

 	
 Use the corner arrows

 to rotate the duplicate 45 degrees. Clicking on the duplicate again returns it to selection mode where it may be moved. Using these two techniques, position the duplicate such that it divides the original rectangle diagonally:

 [image: Figure 8.8 – Positioning the duplicate rectangle

]

 Figure 8.8 – Positioning the duplicate rectangle

 	
 Be sure to position the duplicate

 above the rounded corners of the original. Hit
 Ctrl
 +
 A
 on the keyboard to select both shapes. From the top menu, select
 Path
 |
 Difference
 . Observe that a new triangular shape is created:

 [image: Figure 8.9 – Shape after the Difference operation

]

 Figure 8.9 – Shape after the Difference operation

 With the basic shape

 created, we will now modify it to make it more visually appealing.

 Modifying the basic shape

 We will modify the basic shape by curving

 the bottom and sides. To do this, we use the
 Edit paths by nodes
 tool:

 	
 Click
 N
 on the keyboard to select the
 Edit paths by nodes
 tool.

 	
 Select the shape by hitting
 Ctrl
 +
 A
 on the keyboard. Hover the mouse over the middle of the bottom line of the shape until it turns into a cursor with a four-sided arrow. Click on the left mouse button and drag up to curve the shape.

 	Do the same for the left side of the shape:

 [image: Figure 8.10 – Modifying the basic shape

]

 Figure 8.10 – Modifying the basic shape

 	
 Using the techniques

 from the steps in the
 Creating the basic shape
 section, draw a box on the bottom (
 Figure 8.11 a
) and use it to flatten the bottom of our shape by using
 Path
 |
 Difference
 to make the bottom of the shape flatter (
 Figure 8.11 b
):

 [image: Figure 8.11 – Flattening the frame shape

]

 Figure 8.11 – Flattening the frame shape

 	
 Using the rectangular tool, create a box with a width of
 10
 , a height of
 20
 , and an
 Rx
 and
 Ry
 of
 5
 . Place and rotate

 this box at the bottom front of the design, so that it is parallel to the flat part of our design:

 [image: Figure 8.12 – Adding a box to the design

]

 Figure 8.12 – Adding a box to the design

 	
 This box will serve as the edge that keeps our laptop from sliding. Hit
 Ctrl
 +
 A
 on the keyboard to select both shapes. From the top menu, select
 Path
 |
 Union
 . Observe that the two shapes have been combined into one shape to complete our design:

 [image: Figure 8.13 – Combining the shapes

]

 Figure 8.13 – Combining the shapes

 	
 With the Inkscape part of our design

 done, save the file as
 frame.svg
 to a directory where we will use it in OpenSCAD.

 We will now import
 frame.svg
 into OpenSCAD to create a 3D version of the frame.

 Using OpenSCAD to complete the design

 In

 Chapter 5

 ,
 Using Advanced Operation of OpenSCAD
 , we imported a
 .svg
 file into OpenSCAD to create a Thumbs Up! award. In

 Chapter 6

 ,
 Exploring Common OpenSCAD Libraries
 , we looked

 at the
 shell2D
 operation from the Round

 Anything library. We explored arrays in

 Chapter 7

 ,
 Creating a 3D-Printed Name Badge
 . We will use

 these three concepts to create the 3D version of the frame of our laptop stand. We will start with the
 shell2D
 operation:

 	
 Create a new file in OpenSCAD and save it to the same location as
 frame.svg
 .

 	
 Type the following code into the editor:
 use <Round-Anything/roundAnythingExamples.scad>

 $fn=200;

 shell2d(0, -12)

 {

 import("frame.svg",center=true);

 }

 	
 After bringing in the
 roundAnythingExamples.scad
 library, we import our
 frame.svg
 file into a
 shell2d
 operation, and set

 it to create an inwards
 12
 mm shell. Save

 the file. Observe

 that the following shape has been created:

 [image: Figure 8.14 – Shell operation on the frame.svg import

]

 Figure 8.14 – Shell operation on the frame.svg import

 	
 To hold the two frame pieces together, we will require threaded rods. We will make a space for our threaded rods on the frame by adding circles. We will use arrays to store the values for the circles. This will allow us to quickly change values to get the circles

 in the right position. Change

 the code to the

 following:
 use <Round-Anything/roundAnythingExamples.scad>

 $fn=200;

 thickness=5;

 front_circle = [62,-42,12];

 back_circle = [-80,-30,20];

 linear_extrude(thickness)

 union()

 {

 shell2d(0, -12)

 {

 import("frame.svg",center=true);

 }

 translate([front_circle[0],front_circle[1]])

 circle(front_circle[2]);

 translate([back_circle[0],back_circle[1]])

 circle(back_circle[2]);

 }

 We have added three variables to set the
 thickness
 of our part, and the position and size of two circles using arrays,
 front_circle
 and
 back_circle
 . The first value in the array sets the
 x
 position of the circle, the second value sets the
 y
 position, and the third value sets the diameter of the circle. The array values will be different for each design of the frame and should be modified if the circles do not sit in the correct position. The ones shown here work with the shape created in the
 Using Inkscape to design the frame
 section.

 	
 Save the file and click on
 Render
 or hit
 F6
 on the

 keyboard. Observe

 that the frame has been

 modified:

 [image: Figure 8.15 – Modified frame

]

 Figure 8.15 – Modified frame

 	
 With the circles in place, it is now time to add screw holes to the frame. The screw holes allow the threaded rods to connect the frame together. We will create a module for adding the screw holes. Add the following code after the variable declarations:
 module create_screw_hole()

 {

 cylinder(d=11, h=500);

 translate([0,0,-500])

 cylinder(d=16, h=500);

 }

 This code creates an
 11
 mm hole with a
 16
 mm countersink. As we will strictly be using 10 mm hardware for our design, hardcoding the values here (instead of declaring them through variables) is acceptable. We give a
 1
 mm buffer

 to both the hole

 and countersink as our rod

 will be M10 (10 mm) with a
 15
 mm shoulder.

 	
 To complete our code, we will wrap up the remaining non-module code in a module itself. Replace the code after the
 create_screw_hole()
 module with the following:
 module create_frame()

 {

 difference()

 {

 linear_extrude(thickness)

 union()

 {

 shell2d(0, -12)

 {

 import("frame.svg",center=true);

 }

 translate([front_circle[0],

 front_circle[1]])

 circle(front_circle[2]);

 translate([back_circle[0],

 back_circle[1]])

 circle(back_circle[2]);

 }

 translate([front_circle[0],

 front_circle[1],

 thickness/2])

 create_screw_hole();

 translate([back_circle[0],

 back_circle[1],

 thickness/2])

 create_screw_hole();

 }

 }

 create_frame();

 What we are doing here is taking the difference between our frame and the screw holes. We can take advantage

 of the
 front_circle
 and
 back_circle
 array values

 to position the screw

 holes, as the holes are positioned in the center point of the circles.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard. Observe that the screw holes and countersinks are added (the design may have to be rotated to see the countersinks):

 [image: Figure 8.16 – Completed frame

]

 Figure 8.16 – Completed frame

 	
 With the design

 completed, hit
 F7
 on the keyboard

 to export the design

 as an
 .stl
 file. Save the file as
 frame_left.stl
 (as this will be the left side of the frame).

 As we will be using the mirror functionality in Cura, there is no need to create an
 .stl
 for the right frame. It is now time to create the threaded rod that will hold our laptop stand together.

 Designing the threaded rod in OpenSCAD

 Creating 3D printed threads and nuts can be challenging due to the imperfections in the process. A slight droop

 while printing can result in a threaded connection

 that is too tight to be of use. Generally, this occurs with smaller-sized threads such as M3 or M4. For this reason, we will only use 3D print threads on the rods for our laptop stand and use standard M10 nuts to secure the rods to the frame.

 Why not print all the hardware we need?

 It is of little value to 3D print objects that are available in great abundance, such as standard nuts and bolts. The cost of the filament coupled with the time taken makes printing standard nuts and bolts expensive compared to just purchasing the hardware. This, of course, would not be the case for those who live in more remote areas.

 For the threaded rod in our laptop stand design, we will be using a library to generate an M10 bolt. We will replace the head of the M10 bolt with a long cylinder and construct our threaded rod by connecting two rods with a connector plate. Designing with a connector plate makes the part easier to print as it removes the overhangs of a dual threaded rod. Also, the connector plate will act as a sort of raft during printing, as its surface area is greater than the rod itself. The rods will be joined together using M3 10 mm bolts. The threaded holes for these bolts will be tapped into the connector plates using an M3 drill tap.

 We will start by using the
 threads.scad
 library to create an M10 bolt before we add a cylinder and connector plate to complete the design.

 Creating a rod with an M10 threaded top

 There is an operation in the
 threads.scad
 library called
 MetricBolt
 , which creates

 a metric

 bolt of a specified size. We will use this operation to create

 a thread to add to a cylinder for our rods.

 To create the thread, we do the following:

 	
 Create a new file in OpenSCAD and type in the following:
 use <threads.scad>

 $fn=200;

 translate([0,0,-10])

 difference()

 {

 MetricBolt(10, 10, tolerance=0.4);

 cylinder(h=10, d=100);

 }

 What we are doing here is bringing in the
 threads.scad
 library to get the
 MetricBolt
 operation. We take

 the difference between an M10, 10 mm bolt

 and a
 cylinder
 that is 10 mm in height and
 100
 mm in diameter. The height of the
 cylinder
 corresponds to the height of the head of the
 MetricBolt
 (10 mm by default and not settable). The
 difference
 operation will leave us with just the thread. We then move the thread down 10 mm using a
 translate
 operation to place it at
 0
 on the
 z
 axis.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard. Observe that only the thread is shown:

 [image: Figure 8.17 – M10 thread from the difference operation

]

 Figure 8.17 – M10 thread from the difference operation

 	
 We will now add a cylinder to the thread to serve as the shoulder of the rod. The cylinder will be
 15
 mm in diameter

 and will provide a snug fit

 with the countersink on the frame. We will put our code in a module to make it easier to handle. Change the thread code (the code starting with the translate operation) to the following:
 module create_rod(height)

 {

 translate([0,0,-10])

 difference()

 {

 MetricBolt(10, 10, tolerance=0.4);

 cylinder(h=10, d=100);

 }

 translate([0,0,-height/2])

 cylinder(h=height, d=15, center=true);

 }

 create_rod(150);

 Our new
 create_rod()
 module adds a
 cylinder
 to the thread with a height determined by the
 height
 parameter. The
 cylinder
 has a set diameter of
 15
 mm, which

 makes it
 5
 mm larger

 than the thread. We call the
 create_rod()
 module with a value of
 150
 to create a cylinder with a height of
 150
 mm from the bottom of the thread.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard. Observe that the rod generated consists of a thread and cylinder:

 [image: Figure 8.18 – Thread with cylinder

]

 Figure 8.18 – Thread with cylinder

 For our design, we will require four rods as we will be joining two together to form a longer rod. To do this, we require a connector plate. Let's now create the connector plate.

 Adding a connector plate

 We will build the connector

 plate with three modules – the first module to create the basic shape, the second module to create the screw holes, and the third module to bring the first two together to create the plate. We will then modify the
 create_rod()
 module to include code to add the connector plate to the rod.

 We will start with a basic shape.

 Creating the connector plate

 To create the basic shape

 for our connector, we will use the intersection operation on a circle and square:

 	
 Comment out the line
 create_rod(150);
 from the code we added in
 Step 3
 of the
 Creating a rod with an M10 threaded top
 section.

 	
 Add the following module above the
 create_rod()
 module:
 module create_connector_plate_shape()

 {

 circle_radius=14.5;

 move_x = 20;

 width = 40;

 height = 20;

 intersection()

 {

 circle(circle_radius);

 translate([move_x,0])

 square([width, height], center=true);

 }

 mirror([1,0,0])intersection()

 {

 circle(circle_radius);

 translate([move_x,0])

 square([width, height], center=true);

 }

 }

 We are taking the
 intersection
 of a
 circle
 and a
 square
 based on parameters set at the top of the module. The values of
 circle_radius
 ,
 move_x
 ,
 width
 , and
 height
 are all hardcoded values, as our rod will always be based on an M10 thread

 and a
 15
 mm diameter rod. We use the
 mirror
 operation to create a symmetrical shape.

 	
 Add the following line of code to the bottom:
 create_connector_plate_shape();

 	
 Click on
 Render
 or hit
 F6
 on the keyboard to observe the following shape:

 [image: Figure 8.19 – Connector plate shape

]

 Figure 8.19 – Connector plate shape

 	
 To create the screw

 holes to join two rod pieces together, we use another module. Add the following module below the
 create_connector_plate_shape()
 module:
 module create_screw_hole()

 {

 translate([0,0,-250])cylinder(d=2.5, h=500);

 }

 Is the order of the modules important?

 As we have gone through the steps, there have been instructions to put modules in certain places. This is only to make the code more readable as the order of the modules is not important. However, the order of the code inside

 a module is important, as it will be run from top to bottom. Generally, it is a good practice to keep modules that make the final part such as
 create_rod()
 at the bottom and "support" type modules such as
 create_connector_plate_shape()
 at the top.

 	
 To create the connector plate, we simply take the
 difference
 from an extruded
 create_connector_plate_shape()
 and two calls to
 create_screw_hole()
 . Add the following

 module below
 create_screw_hole()
 :
 module create_connector_plate()

 {

 difference()

 {

 linear_extrude(4)

 create_connector_plate_shape();

 translate([11,0,0])

 create_screw_hole();

 translate([-11,0,0])

 create_screw_hole();

 }

 }

 	
 Replace the line
 create_connector_plate_shape();
 from
 Step 3
 with the following:
 create_connector_plate();

 	
 Click on
 Render
 or hit
 F6
 on the keyboard. Observe that a connector plate with screw holes is generated:

 [image: Figure 8.20 – Generated connector plate

]

 Figure 8.20 – Generated connector plate

 With the connector plate

 code in place, it is now time to modify the
 create_rod()
 module to complete the design of the rod.

 Attaching the connector plate to the rod

 To add the connector plate

 to the rod, we need to modify the
 create_rod()
 module. To do

 this, we do the following:

 	
 Modify the code in the
 create_rod()
 module to the following:
 module create_rod(height)

 {

 translate([0,0,-10])

 difference()

 {

 MetricBolt(10, 10, tolerance=0.4);

 cylinder(h=10, d=100);

 }

 translate([0,0,-height/2])

 cylinder(h=height, d=15, center=true);

 translate([0,0,-height])

 create_connector_plate();

 }

 All we are doing here is adding

 the lines to create a connector plate

 moving it down in the
 z
 direction so that it sits at the bottom of the rod.

 	
 Uncomment out the call to
 create_rod();
 and comment out
 create_connector_plate();
 :
 create_rod(150);

 	
 Click on
 Render
 or hit
 F6
 on the keyboard. Observe that a rod with M10 threads at one end and a connector plate at the other is generated:

 [image: Figure 8.21 – Rod with threads and a connector plate

]

 Figure 8.21 – Rod with threads and a connector plate

 	
 With the rod design completed, hit
 F7
 on the keyboard to export the design as a
 .stl
 file. Save the file as
 rod.stl
 .

 We will need four rods for our design as we will connect two together using the connector plate with M3 10 mm bolts. To prepare the screw holes for the M3 bolts, we will use an M3 tap (see
 Figure 8.1
) to create threads through the screw holes. We will

 use standard M10 nylon cap nuts (see
 Figure 8.2
) to attach

 the rods to the frames.

 Before we do all that, we will need to print out the frames and rods. We will do that next.

 Printing out our laptop stand

 We will require

 two frames, four rods, four M10 nylon cap nuts, and 4 M3 10 mm bolts to build our laptop stand. We will 3D print the frames and rods. The rods will be held together with the M3 10 mm bolts.

 Slicing and printing the frame

 We will start by printing

 the left side of the frame. We will then mirror the frame

 in Cura and print it again. Let's begin:

 	
 Open up Cura and select
 Generic PLA
 ,
 0.4mm Nozzle
 :

 [image: Figure 8.22 – Generic PLA template

]

 Figure 8.22 – Generic PLA template

 	
 If prompted with
 Discard or Keep changes
 , click on the
 Discard changes
 button.

 	
 Under
 Print Settings
 |
 Build Plate Adhesion
 , set
 Build Plate Adhesion Type
 to
 None
 .

 	
 Click on
 File
 |
 Open File(s)...
 and select the
 frame_left.stl
 file created in the
 Designing the frame in Inkscape and OpenSCAD
 section.

 	
 Using the
 Rotate
 and
 Move
 tools, position

 the frame so that it fits onto

 the bed. The frame will need to be flipped over so that the countersinks can be seen:

 [image: Figure 8.23 – Left side of the frame in Cura

]

 Figure 8.23 – Left side of the frame in Cura

 	
 We will make three changes in
 Print Settings
 . Under
 Top/Bottom
 , set
 Top/Bottom Thickness
 to
 1.2mm
 and click on
 Enable Ironing
 . Set
 Infill Line Multiplier
 under
 Infill
 to
 2
 :

 [image: Figure 8.24 – Modifications to Print Settings

]

 Figure 8.24 – Modifications to Print Settings

 	
 With these modifications, our frame

 should be quite sturdy (ironing not only adds a little extra filament, but it smooths out the top surface as well). Slice

 the file by clicking on the
 Slice
 button.

 	
 Insert a microSD card into the computer and click on the
 Save to Removable Drive
 button. V

 erify that the name of the file is
 frame_left.gcode
 .

 	
 Load the microSD card into the 3D printer and run the print job
 frame_left
 .

 	
 To create the right side of the frame, click on the frame in Cura and press the
 M
 key on the keyboard. Observe that the mirror arrows appear over the frame:

 [image: Figure 8.25 – Mirroring the frame

]

 Figure 8.25 – Mirroring the frame

 	Click on a green arrow to mirror the frame.

 	
 Using the
 Rotate
 and
 Move
 tools, reposition

 the frame so that it fits

 on the build plate.

 	
 Change the name of the project to
 frame_right
 in the text area at the bottom-left of the screen:

 [image: Figure 8.26 – Changing the name to frame_right

]

 Figure 8.26 – Changing the name to frame_right

 	
 Repeat
 Steps 7 to 9
 for the mirrored frame.

 With the two frame pieces made, it is now time to 3D print the rods. We will print all four rods together.

 Slicing and printing the rods

 Adding the connector plates

 to the rods gives us a flat surface for the build plate. We will slice

 and print all four rods at the same time. We will clear the build plate and then add the rods. To do so, we do the following:

 	
 In Cura, select all objects on the build plate by hitting
 Ctrl
 +
 A
 on the keyboard.

 	
 Hit the
 Delete
 key on the keyboard to clear the build plate.

 	
 Click on
 File
 |
 Open File(s)...
 and select the file
 rod.stl
 .

 	
 Hit
 Ctrl
 +
 A
 and then
 Ctrl
 +
 M
 to get the
 Multiply Selected Model
 dialog:

 [image: Figure 8.27 – Multiply Selected Model dialog

]

 Figure 8.27 – Multiply Selected Model dialog

 	
 Enter the number
 3
 and click on the
 OK
 button.

 	
 Hit
 Ctrl
 +
 A
 and then
 Ctrl
 +
 R
 on the keyboard to auto arrange the models on the build plate.

 	
 We will change two
 Print Settings
 properties; turn off
 Enable Ironing
 and set
 Build Plate Adhesion Type
 to
 Brim
 :

 [image: Figure 8.28 – Print Settings for rods

]

 Figure 8.28 – Print Settings for rods

 	
 Slice

 the file by

 clicking on the
 Slice
 button.

 	
 Click on the
 Preview
 button to preview the print job:

 [image: Figure 8.29 – Previewing the print job

]

 Figure 8.29 – Previewing the print job

 	
 Observe the brim that surrounds

 the connector plates of the rods. The brim

 increases the surface area that touches the build plate and provides strong adhesion during printing. Insert a microSD card into the computer and click on the
 Save to Removable Drive
 button. Verify that the name of the file is
 rod.gcode
 .

 	
 Load the microSD card into the 3D printer and run the print job
 rod
 .

 With the frames and rods printed, it is now time to put the laptop stand together.

 Putting the laptop stand together

 To put the laptop stand together, we first add

 threads to the connector plates of the rods. We will then connect the rods together with M3 10 mm bolts. Using M10 nuts, we will attach the rods to the frames.

 Let's start by taping out 3 mm threads on the connector plates:

 	
 Using a drill tap, as shown in
 Figure 8.1
 , tap a 3 mm thread into all eight of the connector

 plate screw holes:

 [image: Figure 8.30 – Adding a thread to the connector plate

]

 Figure 8.30 – Adding a thread to the connector plate

 	Create two rods out of the four rod pieces using the M3 10mm bolts:

 [image: Figure 8.31 – Screwing the rods together

]

 Figure 8.31 – Screwing the rods together

 	Insert the threaded end of the rod through the hole in the frame such that the countersink is on the inside:

 [image: Figure 8.32 – Threaded rod and frame

]

 Figure 8.32 – Threaded rod and frame

 	
 Using the M10 nut, secure

 the rod to the frame. Do the same for all the holes in the frame:

 [image: Figure 8.33 – Completed laptop stand (painted)

]

 Figure 8.33 – Completed laptop stand (painted)

 This completes the construction of the laptop stand. With our design and the dimensions, our laptop stand

 should be useful for a wide range of 15" laptops. Adjustments can be made, however, for smaller laptops, such as Macbooks.

 Summary

 In this chapter, we created a laptop stand to use to elevate a laptop on a desk. We used the graphics program Inkscape to design the basic frame for our laptop stand. We then imported the Inkscape file into OpenSCAD, where we shelled it out using the
 shell2D
 operation before extruding it into a 3D shape.

 We modified the frame by adding circles, which provided a place for screw holes for threaded rods. The threaded rods were designed in two pieces and were assembled with connector plates using M3 10 mm bolts. We made use of readily available M10 nuts to finish the construction of our laptop stand.

 The main takeaway from this chapter is the use of 3D printing with traditional building techniques to make objects. Although we could've 3D printed threads for the connector plates and 3D printed M10 nuts, using a 3 mm tap and standard M10 nuts is far more effective.

 In the next chapter, we will continue learning OpenSCAD as we design and 3D print a model rocket.

 Chapter 9

 : Designing and Printing a Model Rocket

 On October 4
 th
 , 1957, the Soviet Union became the first country on Earth to launch a satellite into orbit with Sputnik 1. This set in motion a space race between the Soviet Union and the United States, which ultimately saw American men walk on the moon on July 20
 th
 , 1969. The hobby of model rocketry was born from this era. Rockets designed and built from lightweight materials such as plastic, balsa, and paper made model rocketry a safe and educational endeavor, inspiring many young people to opt for STEM (science, technology, engineering, and math) fields. In fact, many credit this time in history for the amazing technological innovations we have today.

 Early model rockets were built using paper tubes, lathe-spun balsa nose cones, and hand-cut balsa fins. In this chapter, we will use 21
 st
 -century 3D design and 3D printing technology to create our own model rocket from a discarded paper towel tube.

 We will cover the following topics:

 	Creating the motor mount

 	Creating the nose cone

 	Creating the fins

 	Assembling and launching the model rocket

 Technical requirements

 The following is required to complete the chapter:

 	Any late-model Windows, macOS, or Linux computer that can install OpenSCAD and Cura.

 	3D printer with ABS and PLA – any FDM printer should work; however, the Creality Ender 3 V2 is the printer used for our example.

 	Paper tube from paper towel roll (referred to as the body tube).

 	3 mm drill tap.

 	2 M3 10 mm bolts.

 	Digital caliper for measurement.

 	Epoxy glue and popsicle stick.

 	1 meter of elastic cord.

 	
 Model rocket parachute –
 https://bit.ly/3pVz1aY
 or
 https://www.youtube.com/watch?v=Y3xhZpmmboE
 .

 The code and images for this chapter may be found here:
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter9
 .

 Creating the motor mount

 The motor mount of the model rocket is used to secure the model rocket motor in place inside the body tube. We will be constructing the motor mount from two rings connected by posts. The top

 ring will have a hole for the ejection charge of the rocket motor. The bottom ring will have a hole for the nozzle at the bottom of the model rocket motor. We will start our motor mount design by taking measurements of the paper tube.

 Building around the paper tube

 For those familiar with model rocketry, it is quite often the case that a simple paper tube from a paper

 towel roll does not fit with existing model rocket parts. However, with OpenSCAD and a 3D printer, we may custom build parts to fit any paper tube. We will design our nose cone, fin can, and motor mount around the paper tube, starting with the motor mount.

 To design the motor mount, we need to get an accurate measurement of the internal diameter of the paper tube. To do this, we will build a measurement tool to assist us. We will start with a

 rough measurement of the internal diameter using a digital caliper.

 Measuring the paper tube

 Due to the lack of

 rigidity of paper tubes, getting exact measurements is a difficult thing to do. Any measurement we do get will be affected by how much we distort the paper tube while taking the measurement. The number we get will not be exact; however, it will be close enough to use as a starting point in our design.

 To get the first measurement, use a digital caliper to measure the internal diameter of the paper tube. Be sure not to squeeze the paper tube to prevent distorting, as shown in the following figure:

 [image: Figure 9.1 – Measuring the internal diameter of a paper tube

]

 Figure 9.1 – Measuring the internal diameter of a paper tube

 For our tube, we measured an internal diameter of 40.7 mm. We will use this value to write code to generate the measurement too

 l.

 Designing the measurement tool

 The tool we will build

 to measure the internal diameter of the paper tube will be a cone-shaped cylinder. By inserting this shape into the paper tube, we may get a more accurate measurement than with our previous method. To build the measurement tool, we do the following:

 	Open up OpenSCAD and create a new file.

 	
 For our example, the internal diameter was measured at
 40.7
 mm. We will use this

 value in our code. Add the following code to our new OpenSCAD file:
 $fn=200;

 d_tool=40.7;

 d_tool_offset=3;

 tool_height=60;

 module create_measurement_tool()

 {

 cylinder(h=tool_height,

 d1=d_tool+d_tool_offset,

 d2=d_tool-d_tool_offset);

 }

 In our code, we have a module called
 create_measurement_tool()
 to create a cone-shaped cylinder with one end
 3
 mm larger than the measured value (
 d_tool
) and the other
 3
 mm smaller than the measured value. We set the height of our tool to
 60
 mm using the
 tool_height
 variable. To generate the measurement tool, add the following code in the editor:

 create_measurement_tool();

 	
 Click on
 Render
 or hit
 F6
 on the keyboard to observe the following:

 [image: Figure 9.2 – Tool to verify paper tube internal diameter

]

 Figure 9.2 – Tool to verify paper tube internal diameter

 	
 Hit
 F7
 on the keyboard and save the
 .stl
 file to the computer. Give it a descriptive name such as
 measurement_tool.stl
 .

 With the
 .stl
 file

 saved to our computer, it is now time to print out and use the measurement tool to get an accurate internal diameter of the paper tube. We will use Cura to slice our object to G Code.

 Printing out and using the measurement tool

 We will print out

 our measurement

 tools in a light-colored
 Polylactic Acid
 (
 PLA
). We will use a raft to avoid the elephant's foot effect and to provide

 strong bed adhesion.

 What Is the Elephant's Foot Effect in 3D Printing?

 The elephant's foot effect in 3D printing refers to the warping of the first few layers during a print job

 due to a lack of space between the print bed and nozzle. This warping takes its name from the shape of an elephant's foot. Often it is necessary to have the first layer "pushed" onto the print bed to gain adhesion, which can lead to the elephant's foot effect.

 We will start by modifying a generic PLA profile:

 	
 Open up

 Cura and select the generic

 PLA profile by selecting
 Material
 |
 Generic
 |
 PLA
 :

 [image: Figure 9.3 – Generic PLA material profile

]

 Figure 9.3 – Generic PLA material profile

 	
 Set
 Build Plate Adhesion Type
 to
 Raft
 .

 	
 Using what we learned in

 Chapter 3

 , Printing Our First Object
 , print out the measurement tool using a light-colored PLA.

 	
 Once printed, insert the measurement tool into the paper tube and make a mark on the measurement tool right where it meets the paper tube (see
 Figure 9.4 a
).

 	
 Using the digital caliper, take a measure where the marking is made. This will be the value we use to create our motor mount (see
 Figure 9.4 b
):

 [image: Figure 9.4 – Taking measurements of the paper tube using the measurement tool

]

 Figure 9.4 – Taking measurements of the paper tube using the measurement tool

 With an accurate

 measurement of the internal diameter

 of the paper tube, we may now design and print the motor mount.

 Designing and printing the motor mount

 By using a standard paper tube from a paper towel roll, we will be making a model rocket that is

 considered larger than most model rockets. To successfully

 launch this rocket, we will require a C- or D-size model rocket motor, and thus our motor mount must accommodate for this.

 What Does the Letter of a Model Rocket Motor Mean?

 The letter used to classify a model rocket motor refers to the motor's total impulse range. Total impulse is the

 maximum momentum for a motor measured in newton-seconds. One newton-second is used to describe a force of one newton on an object for one second. A C motor has a total impulse range of 5.01–10 newton-seconds, while a D motor has a total impulse range of 20.01–40 newton-seconds. A good source of information for model rocketry is the Sigma Rockets YouTube channel (which yours truly helped to create):
 http://www.youtube.com/sigmarockets
 .

 As C motors are

 generally 18 mm in diameter and D motors 24 mm in

 diameter, we will design our code to be dynamic enough to generate a motor mount for either size. We will use a conditional statement in our code to do this.

 Writing code to generate a motor mount

 With an accurate internal

 diameter measurement, we may

 now proceed to design the motor mount. We will design the motor mount to fit a standard 18 mm model rocket motor by default. We will use an
 if
 statement in our code to modify the motor mount to suit a 24 mm model rocket motor if desired.

 We will parameterize our code with the following values:

 	
 d_actual
 – The internal diameter of the paper tube as measured using the measurement tool.

 	
 motor_height
 – The height of the model rocket motor. This value is 70 mm for both 18 mm and 24 mm motor rocket motors.

 	
 motor_diameter
 – The default model rocket motor diameter. We will add an additional 0.5 mm to this value.

 	
 thrust_ring
 – The thrust ring is used to keep the model rocket motor from moving up the paper tube. Its size, coupled with the
 motor_diameter
 , matches the thickness of the tube used in the model rocket motor. We will use a default value of 14 mm for an 18 mm model rocket motor.

 	
 ring_thickness
 – This is the thickness of the top and bottom rings used in the motor mount.

 	
 screw_hole_distance
 – This is the distance of the screw hole from the center. M3 10 mm bolts will be used to secure the model rocket motor in place.

 	
 mount_post_diameter
 – This is the diameter of the posts that will connect the top and bottom rings together.

 The following d

 iagram illustrates the parameters

 used in designing our motor mount:

 [image: Figure 9.5 – Motor mount dimensions (not to scale)

]

 Figure 9.5 – Motor mount dimensions (not to scale)

 Now we will start writing the code to create the centering ring, followed by motor mount posts.

 Creating the centering ring

 The centering ring is the centering adapter between the model rocket motor and the paper tube. For our

 motor mount, we will require

 two centering rings. In our code, we will define the variables used for the entire motor mount before writing the code for the centering ring.

 We will start by creating a new OpenSCAD file:

 	
 Open

 up OpenSCAD and create a

 new file.

 	
 At the top of the file, add the variable declarations:
 $fn=200;

 d_actual=41.7;

 motor_height=70;

 motor_diameter=18.5;

 thrust_ring=14;

 ring_thickness=4;

 screw_hole_distance=16;

 mount_post_diameter=15;

 	
 In the editor, add the following code:
 module create_centering_ring()

 {

 difference()

 {

 cylinder(h=ring_thickness, d=d_actual);

 translate([0,0,ring_thickness/2])

 cylinder(h=500, d=motor_diameter);

 cylinder(h=500, d= thrust_ring, center=true);

 }

 }

 create_centering_ring();

 	
 With this code, we create a ring with an internal indent equal to the diameter of an 18 mm model rocket motor (plus 0.5 mm). Click on
 Render
 or hit
 F6
 on the keyboard and observe the centering ring:

 [image: Figure 9.6 – 18 mm centering ring

]

 Figure 9.6 – 18 mm centering ring

 	
 As we want

 our code to produce 24 mm

 model rocket motors as well, we will add a new variable called
 type
 . If
 type
 is equal to
 18
 (as in 18 mm), we will generate an 18 mm centering ring (as in
 Figure 9.6
); if not, we will generate a 24 mm centering ring. Change the code for the module
 create_centering_ring()
 and the call to this module to the following:
 module create_centering_ring(type=18)

 {

 difference()

 {

 cylinder(h=ring_thickness,d=d_actual);

 if(type==18)

 {

 translate([0,0,ring_thickness/2])

 cylinder(h=500,d=motor_diameter);

 cylinder(h=500,d=thrust_ring,

 center=true);

 }

 else{

 translate([0,0,ring_thickness/2])

 cylinder(h=500,d=motor_diameter+6);

 cylinder(h=500,d=thrust_ring+6,

 center=true);

 }

 }

 }

 create_centering_ring(24);

 	
 We add
 6
 to the

 value of
 motor_diameter
 and
 thrust_ring
 if
 type
 is not equal to
 18
 . This will generate a centering

 ring for a 24 mm model rocket motor. Click on
 Render
 or hit
 F6
 on the keyboard and observe that a centering ring for a 24 mm model rocket motor is generated:

 [image: Figure 9.7 – 24 mm centering ring

]

 Figure 9.7 – 24 mm centering ring

 With the code to

 generate the centering ring

 written, it is time to add the side posts that will hold the model rocket motor in the paper tube.

 Creating the motor mount posts

 We will add two

 posts to the centering ring. The posts will

 also be used to connect a bottom centering ring to the motor mount.

 To write the code to create the motor mount post, do the following:

 	
 Delete the line
 create_centering_ring(24);
 .

 	
 Add the following module:
 module create_mount_post(type=18)

 {

 difference()

 {

 translate([screw_hole_distance,0,0])

 cylinder(d=mount_post_diameter,

 h=motor_height);

 if(type==18)

 {

 cylinder(d=motor_diameter, h=500,

 center=true);

 }

 else

 {

 cylinder(d=motor_diameter+6, h=500,

 center=true);

 }

 difference()

 {

 cylinder(d=1000, h=500,

 center=true);

 cylinder(d=d_actual, h=500,

 center=true);

 }

 }

 }

 With this module, we create a cylinder of diameter
 mount_post_diameter
 and a height of
 motor_height
 . We then move the cylinder in the
 x
 axis by the value of
 screw_hole_distance
 (we will use this

 variable to place the screw holes later in the code). We

 cut the post on one side with a cylinder equal to either
 18
 mm or
 18 + 6
 mm based on the value of
 type
 . We then use a hollow cylinder with an internal diameter equal to the internal diameter of our paper tube to create the final shape.

 	
 Add the following line to the code:
 create_mount_post(24);

 This will generate a motor mount post for a 24 mm model rocket motor.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard and observe the following:

 [image: Figure 9.8 – Motor mount post

]

 Figure 9.8 – Motor mount post

 	
 Before we add the post to the centering ring, we need a module for screw holes. Add the following module to the code:
 module create_screw_holes(diameter)

 {

 translate([screw_hole_distance,0,0])

 cylinder(d=diameter, h=500, center=true);

 translate([-screw_hole_distance,0,0])

 cylinder(d=diameter, h=500, center=true);

 }

 This module

 is very similar to the screw hole module

 from the
 Adding a connector plate
 section of

 Chapter 8

 , Designing and Printing a Laptop Stand
 . Basically, it creates a cylinder with a large height with a diameter determined by the
 diameter
 variable. It is moved in the
 x
 direction by the value of
 screw_hole_distance
 . The cylinder is centered to allow for a clean cut. It is then mirrored so that two screw holes may be generated.

 	
 We may now write the code to add a centering ring to motor mount posts. Add the following module to the code:
 module create_main_bracket(type=18)

 {

 difference()

 {

 union()

 {

 mirror([1,0,0])

 create_mount_post(type);

 create_mount_post(type);

 }

 create_screw_holes(2.5);

 }

 create_centering_ring(type);

 }

 The
 create_main_bracket()
 module generates two motor mount posts and adds
 2.5
 mm screw holes through a
 difference()
 operation. A centering ring is then added.

 	
 Replace the
 create_mount_post(24);
 line with the following:
 create_main_bracket(24);

 With this line, we

 will create a motor mount main

 bracket for a
 24
 mm model rocket motor.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard and observe the following:

 [image: Figure 9.9 – Motor mount main bracket

]

 Figure 9.9 – Motor mount main bracket

 	
 Before we write the code to finish the motor mount, we will save the motor mount

 main bracket as an
 .stl
 file. Hit
 F7
 on the

 keyboard and save the file to the computer. Give it a descriptive name such as
 main-bracket.stl
 .

 	
 To complete the motor mount, we require a bottom centering ring to hold the motor in place. Add the following module to the code:
 module create_bottom_bracket(type=18)

 {

 difference()

 {

 create_centering_ring(type);

 create_screw_holes(3);

 rotate([0,0,90])

 create_screw_holes(6);

 }

 }

 The
 create_bottom_bracket()
 module generates a centering ring with two sets of

 screw holes. One set (
 3
 mm) to screw the bottom

 bracket onto the main bracket and the other (
 6
 mm) to act as air holes to help cool the model rocket motor after flight.

 	
 Replace the
 create_main_bracket(24);
 line with the following:
 create_bottom_bracket(24);

 With this line, we will create a bottom bracket for a
 24
 mm model rocket motor.

 	
 Click on
 Render
 or hit
 F6
 on the keyboard and observe the following:

 [image: Figure 9.10 – Motor mount bottom bracket

]

 Figure 9.10 – Motor mount bottom bracket

 	
 Hit
 F7
 on the keyboard and save the file to the computer. Give it a descriptive name, such as
 bottom-bracket.stl
 .

 With the bottom

 bracket generated and saved, we are now

 ready to print out the motor mount.

 Printing out and installing the motor mount

 As our motor mount will be

 touching the model rocket motor, we

 want it to be as resistant as possible to high temperatures. Ideally, we would print it with a liquid resin printer and an engineering-grade resin; however, as we are dealing with FDM printers, we will use a filament.

 ABS melts at a higher temperature than PLA, is relatively inexpensive, and is readily available. Saying that, however, ABS can be a challenge to print with. An enclosure of some sort is desired to avoid the cracking that can occur as the ABS cools while printing (see
 Figure 9.11
):

 [image: Figure 9.11 – ABS cracking

]

 Figure 9.11 – ABS cracking

 For our motor mount, small cracks would be acceptable as the motor mount will be inserted inside the paper tube. We will print with a draft shield to protect the print during the print job. An enclosure such as a tent enclosure is strongly recommended.

 We will start by modifying a generic ABS profile:

 	
 Open up Cura and select the generic PLA profile by selecting
 Material
 |
 Generic
 |
 ABS
 .

 	
 Ensure that
 All
 settings are selected:

 [image: Figure 9.12 – Selecting All in Cura

]

 Figure 9.12 – Selecting All in Cura

 	
 Change the

 following default settings to the values

 shown here (as indicated by the red boxes):

 [image: Figure 9.13 – Cura settings for ABS

]

 Figure 9.13 – Cura settings for ABS

 Of note is the
 Enable Draft Shield
 setting under the
 Experimental
 section. This will

 create a shield around the print during the

 print job, protecting the print from cool air that might cause cracking.

 	
 Import the motor mount main bracket and motor mount bottom bracket into Cura using the
 File
 |
 Open File(s)...
 menu option.

 	
 For our example, we will load the 24 mm version of the motor mount parts. Click on the blue
 Slice
 button on the bottom-right part of the screen.

 	
 Click on the
 Preview
 button to observe what our print job will look like:

 [image: Figure 9.14 – Preview of the motor mount print job

]

 Figure 9.14 – Preview of the motor mount print job

 	
 Using what

 we learned in

 Chapter 3

 , Printing Our First Object
 , run

 the print job using ABS filament.

 	After the print is done, we will tap thread holes into the mount posts. Using a 3 mm drill tap, add threads to both posts:

 [image: Figure 9.15 – Adding threads to the motor mount

]

 Figure 9.15 – Adding threads to the motor mount

 	
 We will now

 glue the motor mount into the paper tube. Using a

 popsicle stick, spread a thin layer of epoxy glue about 60 mm inside the paper tube:

 [image: Figure 9.16 – Adding glue to the paper tube

]

 Figure 9.16 – Adding glue to the paper tube

 	Install the motor mount main bracket into the paper tube such that the motor mount posts are flush with the bottom of the paper tube:

 [image: Figure 9.17 – Installing the motor mount main bracket

]

 Figure 9.17 – Installing the motor mount main bracket

 	
 Using M3 10 mm bolts, attach the motor mount bottom bracket to the motor mount

 main bracket. The bottom bracket will be removed

 and re-attached when installing the model rocket motor:

 [image: Figure 9.18 – Attaching the bottom bracket

]

 Figure 9.18 – Attaching the bottom bracket

 With the motor mount

 installed, it is now time to take an accurate

 outside diameter measurement of the paper tube.

 Getting an accurate outside diameter measurement

 With the

 motor mount installed, an accurate measurement of the outside diameter of the paper tube may be taken by following these steps:

 	Using a digital caliper, take the outside diameter measurement against the inside centering ring:

 [image: Figure 9.19 – Taking the outside diameter measurement of the paper tube

]

 Figure 9.19 – Taking the outside diameter measurement of the paper tube

 	In our example, we measure the outside diameter at 42 mm. We will add 0.5 mm to this value for a buffer.

 We will use this measurement when we write the code to generate the nose cone and fins.

 Creating the nose cone

 The nose cone sits on top of the rocket and has a shape that reduces the aerodynamic

 drag on the rocket as it goes up. It attaches to the rocket through a shock cord and is jettisoned from the rocket when the ejection charge of the rocket motor is fired. A parachute attached to the shock cord brings the rocket down safely.

 We will build the nose cone in two parts – the shoulder and the cone. Then we will print the nose cone. Let's start by building the shoulder.

 Designing the nose cone

 In the
 Printing out and using the measurement tool
 section, we measured an accurate internal

 diameter of the paper tube. We will use this value to create the shoulder part of the nose cone. We will also use the measured outside diameter taken in the
 Getting an accurate outside diameter measurement
 section.

 The variables we will use to create the nose cone are the following:

 	
 diameter_in
 – This is the internal diameter of the paper tube and will be used to create a nose cone shoulder.

 	
 diameter_out
 – This is the outside diameter of the paper tube. It will be used for the cone shape part of the nose cone.

 	
 cone_height
 – The height of the cone part of the nose cone or the part that sits outside of the paper tube.

 	
 shoulder_height
 – The height of the shoulder part of the nose cone.

 	
 taper
 – The value subtracted from
 diameter_in
 to create a taper at the bottom of the nose cone shoulder. The taper allows the nose cone to slide into the paper tube with ease.

 We will start by creating a new file in OpenSCAD:

 	Open up OpenSCAD and create a new file.

 	
 At the top of the file, add the variable declarations:
 $fn=200;

 diameter_in=41.7;

 diameter_out=42.5;

 cone_height=65;

 shoulder_height=20;

 taper=1;

 	
 Add the

 following code after the variable declarations:
 module create_shoulder()

 {

 difference()

 {

 cylinder(h=shoulder_height,

 d1=diameter_in-taper,

 d2=diameter_in);

 rotate([0,90,0])

 linear_extrude(height=10, center=true)

 difference()

 {

 circle(15);

 circle(5);

 }

 }

 }

 The
 create_shoulder()
 module creates a cylinder with a slight cone shape. The bottom diameter is set to
 1
 mm less (
 taper
) than the internal diameter of the paper tube, and the top is equal to the internal diameter. A sideways

 ring is subtracted from this shape to provide a channel to thread the shock cord through.

 	
 Add the following code below the module:
 create_shoulder();

 	
 Click on
 Render
 or hit
 F6
 on the keyboard to observe the nose cone shoulder:

 [image: Figure 9.20 – Nose cone shoulder

]

 Figure 9.20 – Nose cone shoulder

 	
 With the nose cone shoulder in place, it is time to add the cone to the top. Add the following module to the code before the
 create_shoulder();
 line:
 module create_cone()

 {

 translate ([0,0,shoulder_height])

 resize([diameter_out,

 diameter_out,

 cone_height])

 difference()

 {

 sphere(d=diameter_out);

 translate([0,0,-500])

 cube([1000,1000,1000],center=true);

 }

 }

 The
 create_cone()
 module creates a cone by stretching a sphere by the value of
 cone_height
 . The diameter of the cone is set to the measure outside diameter of the paper tube (
 diameter_out
). A large cube is used to remove

 the bottom part of the stretched sphere to create a cone. The entire shape is moved up by the value of
 shoulder_height
 to place it on top of the nose cone shoulder.

 	
 Add a call to
 create_cone()
 to the code. Our nose cone is created with the following two lines of code:
 create_shoulder();

 create_cone();

 	
 Click on
 Render
 or hit
 F6
 on the keyboard to observe the creation of the nose cone:

 [image: Figure 9.21 – Nose cone

]

 Figure 9.21 – Nose cone

 	
 Hit
 F7
 on the

 keyboard and save the file to the computer. Give it a descriptive name, such as
 nosecone.stl
 .

 With the nose cone created, it is time to 3D print it.

 Printing out the nose cone

 With the nose cone
 .stl
 file created, we will now print out the nose cone. We will use PLA as it is

 easier to print with than ABS.

 As in our previous print jobs, we will start with a generic template and modify it to our needs. We will use the generic PLA template:

 	
 Open up Cura and select the generic PLA profile by selecting
 Material
 |
 Generic
 |
 PLA
 .

 	
 Set
 Infill Density
 to
 10%
 and
 Infill Line Multiplier
 to
 2
 under the
 Infill
 settings:

 [image: Figure 9.22 – Modified Infill settings

]

 Figure 9.22 – Modified Infill settings

 	
 Load the nose cone into Cura using the
 File
 |
 Open File(s)...
 menu.

 	
 Click on the blue
 Slice
 button on the bottom-right part of the screen to create the print job.

 	
 Using what

 we learned in

 Chapter 3

 , Printing Our First Object
 , run the print job using PLA filament.

 With the nose cone designed and printed, it is now time to create the fins for our model rocket. Let's do that now.

 Creating the fins

 Traditionally, fins for model rockets were cut from thin balsa sheets and glued to the body tube of the rocket. Early kits provided cut-out patterns from paper that were traced onto the

 balsa sheet and cut out with a sharp hobby knife. When laser cutters became available, these fins were pre-cut out of balsa sheets, making it faster and easier for the kit builder to build their model rocket.

 Still, the challenge with balsa fins was in gluing them to the body tube as they took a long time to dry. Getting the fins straight also proved to be difficult at times.

 Plastic fin cans (fins pre-attached to a tube) make putting fins on a model rocket much easier. Armed

 with OpenSCAD and a 3D printer, we can easily create our own fin cans.

 Let's do that now.

 Designing the fin can

 Our fin can will be designed such that we may alter the number of fins generated. A "launch lug," or small

 tube to hold the rocket on the launchpad for the first meter or so of flight, will be built into the fin can.

 What Is a Launch Lug?

 A launch lug is a fancy name for a paper-coated straw that generally is glued mid-way onto the body tube

 of a model rocket. The paper coating allows it to be glued onto the body tube with standard white glue. For larger rockets, it is common to break the launch lug up into multiple pieces on the body tube. For our example, we will build the launch lug onto the fin can, to keep things simple.

 For our design, we will be using the OpenSCAD
 polygon
 operation to define the fin shape. This operation allows us to create a shape by passing in
 x
 and
 y
 coordinates. We will also use a
 for
 loop to dynamically generate the number of fins we want.

 The variables we will use are the following:

 	
 height
 – The height of the cylinder of the fin can as well as the length of the leading edge of a fin

 	
 diameter
 – The internal diameter of the fin can

 	
 thickness
 – The value to determine the thickness of the fins, fin can cylinder, and launch lug

 	
 guide_diameter
 – The diameter of the launch lug or guide

 	
 fins
 – The number of fins that will be generated for our fin can

 	
 fin_shape
 – The
 x
 ,
 y
 coordinates to determine the shape of the fin

 We will start by verifying the fin shape.

 Generating the fin design using the polygon operation

 The
 fin_shape
 parameter

 defines the

 coordinates to draw out the fin design. By using the
 height
 parameter inside the
 fin_shape
 coordinates, we ensure that the leading edge of the fin or the edge that connects to the fin can cylinder is always the same height as the tube.

 Let's start the design of our fin can by viewing the shape of the fin. We will start with a new OpenSCAD file:

 	Open up OpenSCAD and create a new file.

 	
 At the top of the file, add the variable declarations:
 $fn=200;

 height=70;

 diameter=43.5;

 thickness=1.2;

 guide_diameter=3;

 fins=3;

 fin_shape=[[0,0],[height,0],

 [100,35],[100,45],

 [35,35]];

 	
 With the variable declarations in place, let's verify the shape of the fin. We will use OpenSCAD's
 polygon
 operation on the
 fin_shape
 variable to do so. Type in the following code below the variable declarations:
 polygon(fin_shape);

 	
 Click on
 Render
 or hit
 F6
 on the keyboard to observe the shape of the fin:

 [image: Figure 9.23 – Fin shape generated with the polygon operation

]

 Figure 9.23 – Fin shape generated with the polygon operation

 With our fin

 shape defined, let's create

 a module that will create a 3D version of the fin.

 Extruding the fin design into a 3D shape

 With the polygon

 operation, we can see a 2D shape of the fin design. To turn this design into a useful 3D shape, we simply extrude it and put the extruded shape in place with
 rotate
 and
 translate
 operations.

 Let's do that with a new module in our code:

 	
 Delete the
 polygon(fin_shape);
 line and replace it with the following module:
 module create_fin(angle=0){

 rotate([0,0,angle])

 translate([diameter/2,0,height])

 rotate([90,90,0])

 linear_extrude(height=thickness, center=true)

 polygon(fin_shape);

 }

 To understand this code, let's work from the bottom to the top. The
 linear_extrude()
 operation makes a 3D version of the polygon of
 fin_shape
 . It is extruded by the value of
 thickness
 and is centered. The fin is rotated with the
 rotate()
 operation such that it sits upright in the
 x
 and
 y
 axis (
 rotate([90,90,0])
). It is then moved in the
 x
 axis equal to the radius of the fin can and up in the
 z
 axis by the value of
 height
 (
 translate([diameter/2, 0, height])
). The
 rotate([0,0,angle])
 operation rotates the extruded fin by an angle equal to

 the
 angle
 parameter (with a default value equal to
 0
) passed into the module in the
 z
 direction.

 	
 To test out this module, add the following line to the bottom of the code:
 create_fin();

 	
 Click on
 Render
 or hit
 F6
 on the keyboard to observe the extruded fin. Observe how it has been rotated and then moved away from the
 x
 and
 z
 axes:

 [image: Figure 9.24 – Extruded fin

]

 Figure 9.24 – Extruded fin

 With the code to

 extrude and move the fin into place, it is now time to finish the design of the fin can. We will create a new module to do that.

 Creating the fin can from extruded fins

 We will now create a new

 module to generate the

 fin can using the
 create_fin()
 module. The
 create_fin()
 module will be called for every fin we need to generate as determined by the
 fins
 parameter (set to
 3
 in our variable declarations). To do so, we do the following:

 	
 Delete the
 create_fin();
 line and replace it with the following module:
 module generate_fin_can()

 {

 difference(){

 union()

 {

 cylinder(h=height,

 d=diameter+thickness);

 for (i = [0 : fins-1]){

 create_fin(i*(360/fins));

 }

 rotate([0,0,180/fins])

 translate([diameter/2+

 guide_diameter/2+thickness/2,

 0, 0])

 difference(){

 cylinder(h=height,

 d=guide_diameter+thickness);

 cylinder(h=height,

 d=guide_diameter);

 }

 }

 cylinder(h=1000, d=diameter, center=true);

 }

 }

 At the heart of this module is a
 for
 loop that places fins evenly around the fin can with the line
 create_fin(i*(360/fins));
 . For a three-fin rocket, this would be done every 120 degrees. A cylinder with a diameter equal to the outside diameter of the paper tube (
 diameter
) plus
 thickness
 is added to the fins (the fin can cylinder). The second
 difference()
 operation creates the launch lug, which is added to the side of the cylinder (
 translate([diameter/2+guide_diameter/2+thickness/2,0,0])
), moving it by the radius and half the thickness. A cylinder with a diameter

 equal to the outside diameter of

 the paper tube is used to cut a hole through the fins and cylinder assembly, thereby creating a fin can that can slide over the paper tube.

 	
 Type in the following code below the
 generate_fin_can()
 module:
 generate_fin_can();

 	
 Click on
 Render
 or hit
 F6
 on the keyboard to observe the generated fin can:

 [image: Figure 9.25 – Generated fin can

]

 Figure 9.25 – Generated fin can

 	
 Hit
 F7
 on the

 keyboard and save the file to your

 computer. Give it a descriptive name, such as
 fincan.stl
 .

 We will now 3D print the fin can, so that we can start assembling the rocket.

 Printing out the fin can

 Printing out the fin can may be challenging as most of its shape would sit above the build plate, thus

 requiring a lot of support material. Removing support material may cause damage to the fin can as the fins themselves are thin. Arguably the best way to print out the fin can is upside down with a raft to keep it from moving while printing. The raft should be removed without leaving any plastic behind. However, in the case where there is a little bit of the raft on the fin can, these bits can be sanded off.

 We will use PLA as it is relatively easy to print with. We are not too concerned about the melting temperature as the fin can will be far enough from the rocket motor, therefore heat is not a concern. We will use Cura and a generic PLA template:

 	
 Open up Cura and select the generic PLA profile by selecting
 Material
 |
 Generic
 |
 PLA
 .

 	
 Modify the
 Build Plate Adhesion
 settings by setting
 Build Plate Adhesion Type
 to
 Raft
 and
 Raft Extra Margin
 to
 20.0
 mm and ensuring that
 Raft Air Gap
 is set to
 0.3
 mm:

 [image: Figure 9.26 – Cura PLA modifications for fin can

]

 Figure 9.26 – Cura PLA modifications for fin can

 What Is Raft Air Gap?

 Raft Air Gap sets the gap between the last layer of the raft and the first layer of the fin can. Having this

 value at 0.3 mm creates a gap of 0.3 mm between the raft and the fin can. This should be sufficient to allow for easy removal of the raft. Raft Air Gap may be increased if the raft is difficult to remove or decreased if the fin can fails to stay on the raft during printing.

 	
 Load the fin can into Cura using the
 File
 |
 Open File(s)...
 menu.

 	
 Rotate the

 fin can 180 degrees vertically such that the fins are pointing upward:

 [image: Figure 9.27 – Rotated fin can in Cura

]

 Figure 9.27 – Rotated fin can in Cura

 	
 Click on the blue
 Slice
 button in the bottom-right part of the screen to create the print job.

 	
 Using what we learned in

 Chapter 3

 , Printing Our First Object
 , run the print job using PLA filament.

 With our fin can printed, we have all the 3D-printed parts we need to construct the rocket. We will now

 install a shock cord, parachute, rocket motor, and model rocket wadding before launching the rocket.

 Assembling and launching the model rocket

 Those familiar with model rocketry understand how a model rocket kit is constructed. Generally, the

 motor mount is installed first followed

 by the shock cord and fins. The nose cone and parachute are installed using the shock cord once the glue on the shock cord is dry.

 The preparation of a model rocket for flight is outside the scope of this book. However, we will outline the steps to complete the construction of the model rocket prior to launch. As we have already glued our motor mount in place, we will start the final assembly of our model rocket with the shock cord.

 Installing the shock cord

 The shock cord of a

 model rocket consists of a flat paper wedge and an

 elastic cord. The shock cord attaches the nose cone and parachute to the body tube of the rocket and provides shock absorption for the nose cone as it is jettisoned from the body tube.

 For our rocket, the paper wedge has a top length of 30 mm, a bottom length of 20 mm, and a height of 80 mm:

 [image: Figure 9.28 – Paper cut-out for shock cord

]

 Figure 9.28 – Paper cut-out for shock cord

 To install the shock cord into our model rocket, we do the following:

 	
 Cut out the paper wedge (image may be found in the GitHub repository of this chapter

 specified in the
 Technical requirements
 section).

 	
 Glue one end of the elastic cord to section 1 of the cutout (
 Figure 9.29 a
).

 	
 Fold section 1 onto section 2 (
 Figure 9.29 b
).

 	
 Put glue on section 3 and fold the mount in half (
 Figure 9.29 c
).

 	
 Allow to dry before gluing the mount inside the paper tube at the opposite end of the motor mount (
 Figure 9.29 d
):

 [image: Figure 9.29 – Installing the shock cord

]

 Figure 9.29 – Installing the shock cord

 Ensure that the mount is placed far enough inside the paper tube so that it will not interfere

 with the nose cone shoulder (>20 mm).

 With the shock cord installed, it is now time to glue the fin can in place on the rocket.

 Installing the fin can

 When we designed the

 fin can, we purposely gave it an internal diameter slightly larger than the outside diameter of the paper tube. This allows us to easily slide the fin can in place over the paper tube. We will secure the fin can in place with glue. White craft glue should be sufficient.

 To do this, we do the following:

 	
 Slide the fin can over the paper tube such that the fins are pointing toward the bottom

 of the motor mount and away from the shock cord, allowing a space between the bottom of the fin can and motor mount (
 Figure 9.30 a
).

 	
 Apply white glue around the paper tube in the space between the bottom of the fin can and motor mount (
 Figure 9.30 a
). A light layer of glue should be sufficient.

 	
 Slide the fin can over the glue, lining up the bottom of the fin can with the bottom of the paper tube (
 Figure 9.30 b
):

 [image: Figure 9.30 – Gluing the fin can in place

]

 Figure 9.30 – Gluing the fin can in place

 	Let the glue dry before handling.

 With the fin can in place, we can now attach the nose cone and parachute and complete the construction of our model rocket.

 Finishing the construction of our model rocket

 To complete our

 model rocket, we need to tie the nose cone and parachute to the shock cord. To do so, we do the following:

 	
 Thread the shock cord through the channel at the bottom of the nose cone and tie a knot (
 Figure 9.31 a
).

 	
 Thread the nose cone through the shrouds of the parachute and tie a knot (
 Figure 9.31 b
):

 [image: Figure 9.31 – Installing the nose cone and parachute

]

 Figure 9.31 – Installing the nose cone and parachute

 	
 Insert the shock cord

 and parachute into the paper tube and install the nose cone:

 [image: Figure 9.32 – The completed model rocket

]

 Figure 9.32 – The completed model rocket

 The rocket is now

 complete. Here is a photo of our rocket lifting off:

 [image: Figure 9.33 – Lift-off!

]

 Figure 9.33 – Lift-off!

 The preparation of the model rocket for flight is beyond the scope of this book. Many resources, such

 as YouTube, exist on how to prepare a model rocket for launch. The best resources are the instructions given from the manufacturers of model rocket launchpads and launch controllers, manufacturers such as Estes Industries (
 https://estesrockets.com
) or Quest Aerospace (
 https://www.questaerospace.com
).

 As with any hobby that involves projectiles, it is imperative that we follow all local laws and safety precautions when engaging in model rocket flight.

 Summary

 In this chapter, we designed and built a model rocket using a standard paper tube from a paper towel roll. As measuring a paper tube can be challenging, we designed and printed a measurement tool to give us an accurate measurement of the internal diameter of the paper tube.

 We used this measurement to design and print a motor mount that we installed and used to give us an accurate outside diameter of the paper tube. Using the internal and outside diameter measurements, we created a nose cone. We designed a fin can using the outside diameter measurement and glued it in place at the bottom of the paper tube. We then finished the construction of our model rocket with a shock cord and parachute.

 Although this chapter was geared toward the design and construction of a model rocket, the key takeaway from this chapter should be the lessons learned in designing and printing parts around an existing shape – in this case, a simple paper tube.

 In the next chapter, we will reflect on some of the ways in which 3D printing can shape the future, and we'll be designing and building a birdhouse.

 Part 4: The Future

 The early 2010s saw a great surge of interest in 3D printing. Many manufacturers rushed new products onto the market at an astonishing pace. The list of features began to grow and prices dropped. The 3D printer has not become one of those products that's in every home like the personal computer did a few decades ago. However, that does not mean that its impact on the modern world has been small. In this chapter, we will look at that impact and project a future where 3D printers continue to provide us with the innovation needed for an advanced society.

 In this part, we cover the following chapter:

 	

 Chapter 10

 ,
 The Future of 3D Printers and Design

 Chapter 10

 : The Future of 3D Printing and Design

 The early 2010s saw a great surge of interest in 3D printing. Many manufacturers rushed new products onto the market at an astonishing pace. The list of features began to grow, and prices dropped. Despite this, the 3D printer did not become one of those products in every home, like the personal computer did a few decades ago.

 However, that does not mean that it has had little impact on the modern world. In this chapter, we will look at some of those impacts, and project a future where 3D printers continue to provide us with the innovation needed for an advanced society.

 In this chapter, we will investigate the following topics:

 	3D printed homes

 	The future of mass customization

 In our section on 3D printed homes, we will design and build a 3D printed birdhouse.

 Technical requirements

 The following is required to complete the chapter:

 	Any late model Windows, macOS, or Linux computer that can install OpenSCAD.

 	A 3D printer with PLA – any FDM printer should work; however, the Creality Ender 3 V2 is the printer used for our example.

 	A 3 mm drill tap.

 	2 M3 15 mm bolts.

 The code and images for this chapter may be found here:
 https://github.com/PacktPublishing/Simplifying-3D-Printing-with-OpenSCAD/tree/main/Chapter10
 .

 3D printed homes

 Fused Deposition Modeling
 (
 FDM
) printing is

 a simple

 method to conceptualize when it comes to 3D printing. It is easy to picture a print head moving in the
 x
 ,
 y
 , and
 z
 directions, depositing material in layers. For the examples used in this book, the material was melted plastic that cooled into a solid soon after leaving the print head. The right combination of temperature to melt the plastic, the speed at which to extrude the melted plastic, the temperature of the print bed, and the speed at which to move the print head and bed make FDM printing possible.

 It's not hard to imagine that to print larger objects, a bigger printer is required. To print an object the size of a house would require something like what we see in
 Figure 10.1
 :

 [image: Figure 10.1 – Large 3D printer printing a house

]

 Figure 10.1 – Large 3D printer printing a house

 Instead of extruding plastic, the printer in
 Figure 10.1
 extrudes concrete and builds the frame of a house one layer at a time. Space is left for the installation of doors and windows.

 So, what exactly are 3D printed homes and how do they differ from traditionally built homes? Let's investigate these questions.

 What are 3D printed homes?

 Residential housing

 is typically built using well-known construction techniques with wood, brick, and cement. This process involves the labor of many individuals in the skilled trades' fields and may be quite time-consuming. By 3D printing the frame of a house, costs are reduced as the time needed to create the frame is reduced. The frame of a small house may be printed in a mere 24 hours.

 So, to answer the question of what it is, a 3D printed house is a house where the frame is constructed layer by layer by using extruded material.

 Advantages of 3D printed homes

 There are many

 advantages to 3D printed homes, with cost being a major one. The following is a list of some of these advantages:

 	As 3D printing is an additive manufacturing process, waste and, hence, costs are reduced as only the material needed for the print is used.

 	The concrete used in 3D printed homes offers more strength and energy efficiency than traditional homes made from wood.

 	Another advantage lies in the design options available for 3D printed homes. With 3D printing, we are not limited to right angles for our walls. A house may be designed with rounded walls and hallways, giving the house a distinctive design.

 	The materials used for 3D printed homes may be sourced locally, thereby reducing transportation costs for materials, which may include recycled material. This has great benefits for more remote areas where transportation costs may be prohibitive, such as future lunar and Martian exploration camps.

 Now, let's look at 3D printed homes for use in space exploration.

 3D printed homes for space exploration

 Creating

 housing

 for lunar and Martian expeditions is a challenging problem to solve. Even with inflatable housing, there are great transportation costs as materials need to be sent via rocket. The cost of sending a large 3D printer to remote locations on Mars, for example, can be offset by the ability to use Martian soil to 3D print the frames for buildings.

 In 2015, NASA began the 3D-Printed Habitat Challenge with the goal of having teams come up with designs for 3D printed shelters on the moon and beyond. Oftentimes, NASA develops technologies that can apply to us on earth with many benefits. In
 Figure 10.2
 , we can see a 3D-Printed Habitat Challenge winning entry from Team SEArch+/Apis Cor:

 [image: Figure 10.2 – Entry in the NASA 3D-Printed Habitat Challenge (Credits: Team SEArch+/Apis Cor)

]

 Figure 10.2 – Entry in the NASA 3D-Printed Habitat Challenge (Credits: Team SEArch+/Apis Cor)

 For our purposes and understanding, we may mimic the construction of 3D printing habitats by printing our own prototypes or tiny houses, such as dollhouses or birdhouses with a desktop 3D printer. In
 Figure 10.3
 , we can see a birdhouse 3D printed using a Tevo Tornado 3D printer:

 [image: Figure 10.3 – 3D printing a birdhouse with a Tevo Tornado 3D printer

]

 Figure 10.3 – 3D printing a birdhouse with a Tevo Tornado 3D printer

 With its

 large

 build plate, the Tevo Tornado is ideal for printing mini houses, such as birdhouses. In the next section, we will turn our attention to designing and printing a birdhouse using OpenSCAD and an Ender 3 V2.

 Creating a 3D printed birdhouse

 Building our own

 3D printed home with a desktop 3D printer may be impractical; however, experimenting with design and printing miniatures is certainly possible. Designing and printing a birdhouse allows us to experiment with design at a relatively low cost. In this section, we will design, and 3D print, a birdhouse using OpenSCAD and an Ender 3 V2. We will start with the top frame.

 Generating the top frame

 We will begin

 by generating the basic shape of the birdhouse. We will utilize the
 minkowski()
 and
 hull()
 OpenSCAD operations to create this shape. We will then hollow out this shape and add a top hook and mounting posts to the bottom.

 We start by creating a new OpenSCAD file:

 	
 Open up OpenSCAD and create a new file. You may give the file a name such as
 birdhouse.scad
 by saving it before continuing.

 	
 Type the following code into the editor:
 $fn=200;

 screw_hole_distance = 88;

 module generate_first_shape()

 {

 hull()

 {

 translate([0,0,180/2])

 resize([180,180,180])

 minkowski()

 {

 cube([10,10,10], center=true);

 rotate([0,0,45])

 cube([25,25,55],center=true);

 cylinder(h=40, d1=30, d2=2, center=true);

 }

 translate([0,0,150])sphere(65);

 }

 }

 generate_first_shape();

 At the heart

 of the
 generate_first_shape()
 module are the
 minkowski()
 and
 hull()
 operations. The
 minkowski()
 operation takes the Minkowski sum of the child nodes under it, and the
 hull()
 operation creates a plastic wrap-type hull around its child nodes. Two cubes, a cylinder, and a sphere are used to create the desired shape within the
 minkowski()
 and
 hull()
 operations.

 	
 Click on
 Render
 , or hit
 F6
 on the keyboard, to observe the first shape generated:

 [image: Figure 10.4 – First shape for the birdhouse design

]

 Figure 10.4 – First shape for the birdhouse design

 	
 Changing just one of the parameters in the
 generate_first_shape()
 module will

 alter the shape. The values used for our example have been derived from trial and error and may be changed as desired. Before we can create the module to generate the final shape, we need to add a few helper modules. Remove the line
 generate_first_shape();
 (the last line in the code) and replace it with the following modules:
 module create_post_mounts()

 {

 translate([screw_hole_distance,0,0])

 cylinder(h=15,d=20);

 translate([-screw_hole_distance,0,0])

 cylinder(h=15,d=20);

 }

 module create_hook()

 {

 translate([0,0,215])

 rotate([90,0,0])

 difference()

 {

 cylinder(h=30, d=40, center=true);

 cylinder(h=30, d=30, center=true);

 }

 }

 module create_screw_holes(diameter)

 {

 translate([screw_hole_distance,0,0])

 cylinder(d=diameter, h=200, center=true);

 translate([-screw_hole_distance,0,0])

 cylinder(d=diameter, h=200, center=true);

 }

 We have

 used similar helper modules in the previous chapters, so we do not need to go over the code here. The modules have been given descriptive names, so their usages are self-explanatory.

 	
 We are now ready to add the final module that will create the top frame. Add the following

 code to the bottom of the editor screen:
 module create_frame()

 {

 difference()

 {

 union()

 {

 difference()

 {

 union()

 {

 generate_first_shape();

 create_hook();

 }

 //hollow out first shape

 translate([0,0,-2])

 scale([0.95,0.95,1])

 generate_first_shape();

 //create doorway

 rotate([90,0,0])

 scale([1,2,1])

 cylinder(h=1000, d=80,center=true);

 }

 create_post_mounts();

 }

 create_screw_holes(2.5);

 }

 }

 create_frame();

 The
 create_frame()
 module

 adds a hook to the top before hollowing out the first shape and creating the door. Mounting posts are added and
 2.5
 mm screw holes are made on the mounting posts.

 	
 Click on
 Render
 , or hit
 F6
 on the keyboard, to observe that the top frame is generated.

 [image: Figure 10.5 – Top frame of the birdhouse

]

 Figure 10.5 – Top frame of the birdhouse

 	
 Hit
 F7
 on the

 keyboard and save the
 .stl
 file to the computer.

 	
 Using what we learned in

 Chapter 3

 ,
 Printing Our First Object
 , print out the top frame using PLA with a generic Cura PLA profile.
 What Is the Minkowski Sum?

 Named after the mathematician, Herman Minkowski, the Minkowski sum is used in applications such as motion planning for robotics. The
 minkowski()
 transformation in OpenSCAD uses the second child object for addition. To really understand the
 minkowski()
 transformation in OpenSCAD, it is best to experiment with it.

 With the top frame printed, it is time to design the bottom tray, which will give the birdhouse a bottom. For this, we will simply design a bowl-like bottom with screw holes

 matching the top frame.

 Completing the design

 For the bottom

 tray, we will cut a smaller cylinder out of a larger cylinder. The bottom tray will extend around the top frame, thereby providing a ledge for the birds to sit before they go inside the birdhouse.

 To create the bottom tray, perform the following steps:

 	
 Delete the line
 create_frame();
 from the code and replace it with the following:
 module create_bottom_plate()

 {

 difference()

 {

 difference()

 {

 cylinder(h=20, d=215, center=true);

 cylinder(h=10, d=210);

 }

 create_screw_holes(3);

 }

 }

 create_bottom_plate();

 	
 Click on
 Render
 , or hit
 F6
 on the keyboard, to observe that the bottom plate is generated.

 [image: Figure 10.6 – Base plate for the birdhouse

]

 Figure 10.6 – Base plate for the birdhouse

 	
 Hit
 F7
 on the keyboard

 and save the
 .stl
 file to the computer.

 	
 Using what we learned in

 Chapter 3

 ,
 Printing Our First Object
 , print out the bottom plate using PLA with a generic Cura PLA profile. Set
 Build Plate Adhesion Type
 to
 None
 . Alternatively, ideaMaker may be used with a texture for slicing, with
 Platform Addition
 set to
 None
 . To clear the build plate, select all objects on the plate (
 Ctrl+A
) and hit the
 Delete
 key on the keyboard.

 	Once printed, the two parts can be joined together using M3 15 mm bolts or epoxy glue.

 [image: Figure 10.7 – Completed birdhouse

]

 Figure 10.7 – Completed birdhouse

 Generating the complete birdhouse in OpenSCAD

 If desired, the

 complete birdhouse may be generated in OpenSCAD by adding the line
 create_frame();
 below the line
 create_bottom_plate();
 before rendering with
 F6
 . The birdhouse may be printed in one piece, but this is not recommended as the connection between the top frame and bottom plate would be very weak due to the horizontal layer lines.

 The base plate in
 Figure 10.7
 was sliced with ideaMaker with the
 Asian Wealth
 texture applied. To get the rustic look, the birdhouse was painted with a flat black paint before a metallic wax was added for a shiny effect. An acrylic clear coat was applied to protect and provide a glossy finish.

 With the

 birdhouse completed, it is time to look at other ways in which we may use 3D printing in the future.

 The future of mass customization

 The first and

 second industrial revolutions created much wealth and raised living standards to levels not seen before. Human-powered and water-driven machines from the first industrial revolution brought about the steam-powered machines and electrification of the second industrial revolution. With the rise of computer technology, the third industrial revolution connected computers to machines to create smarter machines.

 Modern technologies such as artificial intelligence, nanotechnology (applications working with extremely small things), and 3D printing define what has been coined the fourth industrial revolution.

 So, what exactly can we expect from this fourth industrial revolution and how do 3D printers fit in?

 The fourth industrial revolution and 3D printing

 In the

 fourth

 industrial revolution, we are introduced to the concept of the smart factory, or a factory that continues to adapt and learn. 3D printers fit well into this paradigm as they are machines that can adapt quickly to changes to a design.

 As 3D printer technology continues to evolve, its place in the world of manufacturing becomes clearer. A key benefit that 3D printing brings to manufacturing is adaptability to the production line. This is especially useful when the design of a part is evolving. Changes to the design can be made between print jobs.

 In addition, 3D printing excels with limited production runs due to the lack of need to create expensive and static molds. Industries such as the aerospace industry do not generally require mass production of parts.

 This leads us to arguably

 one of the more exciting benefits of 3D printing as regards manufacturing – mass

 customization.

 Customizing products

 3D printers

 shine in mass customization, or the need to make parts with unique characteristics for each part made. In
 Figure 10.8
 , we can see a customized ring stand used to hold a championship ring. With standard mass production, each ring stand would be the same. However, in this 3D printed example, the player's name, jersey number, and stats (at the back of the stand) are unique for each ring stand printed.

 [image: Figure 10.8 – Customized ring stand

]

 Figure 10.8 – Customized ring stand

 With mass customization, products can be tailored to each customer. This is not only limited to their name – think of 3D printed footwear and how each shoe produced would fit the customer's foot perfectly.

 For our purposes, it is not hard to picture taking what we learned about OpenSCAD and 3D printing and use it to create a business model based on exact customer needs and

 preferences.

 Summary

 In this chapter, we explored the use of 3D printers in the construction of homes. Although running large concrete 3D printers is beyond the scope of this book, we were able to practice our housing design skills by building a birdhouse.

 We then investigated how 3D printing aligns with the fourth industrial revolution, one where smart factories constantly learn and improve. The flexibility of the 3D printing process allows for constant design improvements during production. Without the need for expensive molds, 3D printers are well suited for limited production runs suitable for sectors such as the aerospace industry.

 Mass customization allows products to be tailored to each customer. Every customer, for example, may buy shoes fitted for their feet. Trophies and trophy stands may be custom-printed for each player on a team.

 With this chapter, we end our journey together through learning the amazing OpenSCAD design program for 3D printing. I hope the journey has been as fulfilling for you, as the reader, as it has been for me, as the writer. It has been a true joy sharing this experience with you.

 Hi!

 I am Colin Dow, author of Simplifying 3D Printing with OpenSCAD. I really hope you enjoyed reading this book and found it useful for increasing your productivity and efficiency in OpenSCAD.

 It would really help me (and other potential readers!) if you could leave a review on Amazon sharing your thoughts on Simplifying 3D Printing with OpenSCAD here.

 Go to the link below or scan the QR code to leave your review:

 https://packt.link/r/1801813175

 [image: Qr code

Description automatically generated]

 Your review will help me to understand what's worked well in this book, and what could be improved upon for future editions, so it really is appreciated.

 Best Wishes,

 Colin Dow

 [image:]

 Packt.com

 Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

 	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

 	Improve your learning with Skill Plans built especially for you

 	Get a free eBook or video every month

 	Fully searchable for easy access to vital information

 	Copy and paste, print, and bookmark content

 Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at
 packt.com
 and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
 customercare@packtpub.com
 for more details.

 At
 www.packt.com
 , you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Other Books You May Enjoy

 If you enjoyed this book, you may be interested in these other books by Packt:

 [image:]

 Sculpting the Blender Way

 Xury Greer

 ISBN: 978-1-80107-387-5

 	Configure your graphics tablet for use in 3D sculpting

 	Set up Blender's user interface for sculpting

 	Understand the core sculpting workflows

 	Get the hang of using Blender's basic sculpting brushes

 	Customize brushes for more advanced workflows

 [image:]

 Learn SOLIDWORKS 2022 - Second Edition

 Tayseer Almattar

 ISBN: 978-1-80107-309-7

 	Understand the fundamentals of SOLIDWORKS and parametric modeling

 	Create professional 2D sketches as bases for 3D models using simple and advanced modeling techniques

 	Use SOLIDWORKS drawing tools to generate standard engineering drawings

 	Evaluate mass properties and materials for designing parts and assemblies

 	Join different parts together to form static and dynamic assemblies

 Packt is searching for authors like you

 If you're interested in becoming an author for Packt, please visit
 authors.packtpub.com
 and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 OEBPS/image/Figure_4.11_B17608.jpg
Editor ¢

@l nziE QLD
1 $£fn=50;
2 sphere(10) ;l *

Preview

OEBPS/image/Figure_4.01_B17608.jpg
@ cubescad - OpenSCAD = X
File Edit Design View Window Help
Editor x

e onn==E GO LD

| cube ([10,10,10], center=true);

y@ReaDBOSOL g Ak

fiewport: translate = [1.80 5.81 -2.48], rotate = [59.20 0.00 336.00], distance = 71.82, fov = 22.50 (574x630) OpenSCAD 2021.01

OEBPS/image/Figure_4.21_B17608.jpg

OEBPS/image/Figure_2.6_B17608.jpg
File Puter Object Setings View Window Help
puser
§ Ade. || 00 (X Daeert @ Arange Scle- |3 Spl [Gt [Loprhaghs || Seings.

Print
Settings .

Part Info

' Info
- Object]
= = Copies: Size:
Volume: Facets:
5ol |20l |Prevea]it Materials: Manifold:

Loaded Meter Bracket.stl

OEBPS/image/Figure_9.11_B17608.jpg

OEBPS/image/B17608_03_14.jpg

OEBPS/image/Figure_9.21_B17608.jpg

OEBPS/image/Figure_8.06_B17608.jpg
—+| @ ifmoo —+[v

OEBPS/image/Figure_10.02_B17608.jpg

OEBPS/image/Figure_10.08_B17608.jpg

OEBPS/image/Figure_8.16_B17608.jpg

OEBPS/image/Figure_9.01_B17608.jpg

OEBPS/image/Figure_8.26_B17608.jpg
frame_right

OEBPS/image/Figure_9.07_B17608.jpg

OEBPS/image/Figure_2.05_B17608.jpg
Layer 1 Layer 450

OEBPS/image/Figure_5.12_B17608.jpg

OEBPS/image/Figure_9.17_B17608.jpg

OEBPS/image/Figure_5.22_B17608.jpg

OEBPS/image/B17608_03_06.jpg

OEBPS/image/Figure_9.27_B17608.jpg

OEBPS/image/Figure_5.18_B17608.jpg

OEBPS/image/Figure_5.08_B17608.jpg

OEBPS/image/Packt_Logo1.png
Packh

OEBPS/image/Figure_2.15_B17608.jpg
(@ Preferences

General

printers
Materals
Profiles

Setting Visibility

V| checkal

<

OEBPS/image/Figure_5.02_B17608.jpg

OEBPS/image/Cover.png
Simplifying
3D Printing with
OpenSCAD

Design, build, and test OpenSCAD programs to bring
your ideas to life using 3D printers

Colin Dow

Iv

OEBPS/image/Figure_5.09_B17608.jpg

OEBPS/image/Figure_5.19_B17608.jpg

OEBPS/image/Figure_9.31_B17608.jpg

OEBPS/image/Figure_7.05_B17608.jpg
Compling design (CSG Tree generation)...
£ro:

ECHO:
ECHO:
£CHO:
£cHo:
ECHO:
ECHO:

ECHO:
£cro:
£cHo:
ECHO:
ECHO:

i D
Ceometricain cache: 37
Germetry cache <on hytes: 440344

CGAL Polyhedrons in cache: 0

CGAL cache size in bytes: 0

Conpins desis (C5G Proxkcs ixmaizator
Normaized tree hac 1 dements'
Comoie and preview fished.

Total rendering time: 0:00:00.071

OEBPS/image/Figure_7.15_B17608.jpg

OEBPS/image/Figure_7.25_B17608.jpg

OEBPS/image/Figure_2.04_B17608.jpg
F ST IORII e code

3MF
3D Design Slicer

OEBPS/image/Figure_9.08_B17608.jpg

OEBPS/image/Figure_9.18_B17608.jpg

OEBPS/image/B17608_03_18.jpg

OEBPS/image/Figure_9.28_B17608.jpg

OEBPS/image/Figure_4.20_B17608.jpg

OEBPS/image/Figure_8.15_B17608.jpg

OEBPS/image/Figure_4.10_B17608.jpg

OEBPS/image/Figure_8.05_B17608.jpg
Change: W: 220000 — +| H:120000 — +| Rx[10000 = +| Ry:|10000 — +|| mmv

OEBPS/image/Figure_6.09_B17608.jpg

OEBPS/image/Figure_6.19_B17608.jpg

OEBPS/image/Figure_8.25_B17608.jpg

OEBPS/image/Figure_2.14_B17608.jpg

OEBPS/image/B17608_03_03.jpg

OEBPS/image/Figure_9.06_B17608.jpg

OEBPS/image/Figure_9.26_B17608.jpg
& Build Plate Adhesion
Build Plte Adhesion Type.

Roft Extra argin

Raft Smoothing

RaftAIr Gap

@5
@5
@
@

il

50

]

OEBPS/image/Figure_9.16_B17608.jpg

OEBPS/image/Packt_Logo.png
Packt)

OEBPS/image/Figure_1.13_B17608.jpg

OEBPS/image/Figure_1.03_B17608.jpg

OEBPS/image/Figure_8.07_B17608.jpg

OEBPS/image/Figure_1.14_B17608.jpg
Points

o o () o
o o o o
o o o o
o o o o
o o o o
' !

Level

Bed

OEBPS/image/Figure_8.17_B17608.jpg

OEBPS/image/Figure_1.04_B17608.jpg
~<—— Coupler

Heater
Block

~<— Nozzle

OEBPS/image/Figure_8.27_B17608.jpg
£

(3 Mtipy Selcted Model

Number of Copies [E] [<|
[cnc || ok |

OEBPS/image/Figure_1.02_B17608.jpg
Spool Holder

Extruder Motor

Filament Tube
(white tube)

Extruder Hot End

X-axis tensioner
(blue knob)

Glass Bed
Levelling Wheel

Display Screen

Control Knob

Tool Drawer

Y-axis tensioner

USB Port

microSD Card
Slot

OEBPS/image/Figure_7.10_B17608.jpg

OEBPS/image/Figure_1.22_B17608.jpg
EXTRA MEDIUM MEDIUM EXTRA
SOFT ‘ ‘ HARD HARD

SOFT SOFT HARD
SHORE 00 010 20 30 40 50 60 70 80 920 100
SHORE A 010 20 30 40 50 60 7 80 90 100
SHORE D

0 10 20 30 40 50 60 70 80 90 100

'] — 9 4

Gummy Pencil Shopping Hard
Bear Erasure Cart Wheel Hat

OEBPS/image/Figure_6.18_B17608.jpg

OEBPS/image/Figure_1.05_B17608.jpg
P@[ﬁt @@@ ing
[Fam

OEBPS/image/Figure_6.12_B17608.jpg

OEBPS/image/Figure_7.03_B17608.jpg

OEBPS/image/Figure_4.09_B17608.jpg

OEBPS/image/Figure_5.07_B17608.jpg

OEBPS/image/Figure_8.21_B17608.jpg

OEBPS/image/Figure_6.05_B17608.jpg

OEBPS/image/Figure_2.20_B17608.jpg
@ ®
s ?
q D
=
o ‘QA‘ Machine: AnyCubic Photon MonoX
204 | Resin: Basic

Volume: 3248 (m)
Weight: 357 (g)
Price: 097§
Time: 1h8m0s

Network Sending

Save

Exposure Time(s Bottom Exposure Timels)
Lift Distance(mm) Layer Height(mm))

Lift Speed(mm/min): Retract Speed(mm/min)

OEBPS/image/Figure_7.23_B17608.jpg

OEBPS/image/Figure_8.14_B17608.jpg

OEBPS/image/Figure_4.03_B17608.jpg

OEBPS/image/Figure_5.21_B17608.jpg
g
v

OEBPS/image/Figure_9.03_B17608.jpg
Generic PLA

St
—

OEBPS/image/Figure_9.32_B17608.jpg

OEBPS/image/Figure_10.06_B17608.jpg

OEBPS/image/Figure_7.16_B17608.jpg

OEBPS/image/Figure_8.08_B17608.png

OEBPS/image/B17608_03_07.jpg
2
b\‘m‘o‘w

bt

L =

OEBPS/image/Figure_1.18_B17608.jpg

OEBPS/image/B17608_03_13.jpg
G .. AV i

Infill Density 20.0 Infill Density 20.0
Infill Line Multiplier 1 Infill Line Multiplier 2

OEBPS/image/Figure_4.12_B17608.jpg
Preview Object magnification Show Axes
and view controls Show
Edges
\
Y9 ReaD @00 Oee ga Hiuno

Render Show Scale
Markers
Perspective
View

OEBPS/image/Figure_10.4_B17608.png

OEBPS/image/Figure_2.16_B17608.jpg
K support ~

pp—— o0y
Sopt ot o0 V
[ASTER— o o
[—— i -
[=
eSS Darerioge (30
Tsoncolse e & (2 =
P— £ oot
Susorscmmng o o
sppor o mm v
st — P —
Comeasippon o oV
e ¢ o

OEBPS/image/Figure_5.01_B17608.jpg

OEBPS/image/Figure_9.19_B17608.jpg

OEBPS/image/Figure_9.12_B17608.jpg
P search settings

o Custom selection
Walls B
Top/Bottom Advanced
B mfin Expert
(7 speed f
= Tavel Collapse Al Categories
& Cooling Manage Setting Visiblity...
Q1 support <

OEBPS/image/Figure_8.32_B17608.jpg

OEBPS/image/Figure_4.18_B17608.jpg

OEBPS/image/Figure_8.12_B17608.jpg

OEBPS/image/Figure_5.23_B17608.jpg

OEBPS/image/Figure_2.07_B17608.jpg
Fle Edt Sice View Model Repair Printer Help

5 & + C w %A

Add Dekte Move Rotate Sl FreeCut Support

Texture

i
Modifer

- Import Models

/ﬁ

- ®
MaxFit Library
(® startSlicing.

—ﬁ

D

RaiseCloud

v

Model: 3DBenchy.st

Bounding Box(mim): 60.0 x 31.0 x 48.0
Triangles: 225154

Edges: 19457

Nor+Marifold Edges: 0

Error Orientation Faces: 0

OEBPS/image/Figure_5.16_B17608.jpg

OEBPS/image/Figure_7.14_B17608.jpg

OEBPS/image/Sculpting_the_Blender_Way.png
Sculpting the U
Blender Way

Explore Blender's 3D sculpting workflows and latest features,
including Face Sets, Mesh Filters, and the Cloth brush

Xury Greer

OEBPS/image/Figure_9.30_B17608.jpg

OEBPS/image/Figure_1.09_B17608.jpg
~<— Filament

Filament 5 < Extruder

Tube Motor
b
Extruder 5| —
Motor =
=
=
=]
=
=
=]
—
Filament ———> Heater < Heater
Block Block

Bowden Tube Direct Drive
Extrusion Extrusion

OEBPS/image/Figure_6.01_B17608.jpg

OEBPS/image/B17608_03_02.jpg
MakerBot Thingiverse

rch Thingiverse:

Education

create + [

20

-
p
2
, " " .
s < . ¢ S « . ¢ s « ¢
§ & & & s & & & ¢ & &
& & & & & & & & & &
By Thing
v R R, R WS S R R
Modified thing:34552 246 103 4 3 0 0 0 0
e . A o

Publshed on July 21, 2018

OEBPS/image/Figure_9.10_B17608.jpg

OEBPS/image/Figure_4.05_B17608.jpg
I (o @ Vacuum Forming Machine V2v37 vi

SURFACE FORM WESH SHETUEAL Tools
o= o . | & - R
— HNROC $O0FSF BN ¢ = & I
B2y - y y
cReaTE woDFY ~ ASSEBLE® | CONSTRUCT | WSPECT® | NSERT® | SELECT+
<« BrowsER ol

PR b o rorming e v]

D % ocument etings

Named Views
- own

© () comecton Tuve:t
© () Top-Botomt
© (] sactest
© (J sust

© (] Tobetessit

0.

A A

COMMENTS ol

OEBPS/image/Figure_6.21_B17608.jpg

OEBPS/image/Figure_5.03_B17608.jpg

OEBPS/image/Figure_7.12_B17608.jpg

OEBPS/image/Figure_6.23_B17608.jpg

OEBPS/image/Figure_4.16_B17608.jpg

OEBPS/image/Figure_8.01_B17608.jpg

OEBPS/image/Figure_6.14_B17608.jpg

OEBPS/image/Figure_2.09_B17608.jpg
2 Modd(s) Invaid

Total Amount: 2

Bounding Box(mim): 118.7 x 31.0 x 35.5
Total Triangles: 232182

Total Vertices: 116221

OEBPS/image/Figure_8.30_B17608.jpg
ey

OEBPS/image/Figure_5.14_B17608.jpg

OEBPS/image/Figure_4.07_B17608.jpg
Fs FreecAD 019
Fie Edt View Tools Moco Rocket Windows Help

I ma&E & JOs-2- SN

ooom @)

0.500000

oo @

o rodeet: =@

Preselected: Unnamed.NoseCone.Face1 (36.828125 mm, -0.789232 mm, -3.486058 mm) & Touchpacv 68,43 mm x 39.43mm

OEBPS/image/Figure_7.01_B17608.jpg

OEBPS/image/Figure_8.10_B17608.jpg

OEBPS/image/Figure_6.03_B17608.jpg

OEBPS/image/B17608_03_17.jpg

OEBPS/image/Figure_5.05_B17608.jpg

OEBPS/image/Figure_7.21_B17608.jpg
Skart/rim Minmum Length

o [0 moml
0 mm|

OEBPS/image/Figure_8.29_B17608.jpg

OEBPS/image/Figure_8.19_B17608.jpg

OEBPS/image/Figure_9.24_B17608.jpg

OEBPS/image/Figure_8.09_B17608.jpg

OEBPS/image/Figure_9.14_B17608.jpg

OEBPS/image/Figure_4.04_B17608.jpg

OEBPS/image/Figure_7.08_B17608.jpg

OEBPS/image/Figure_4.14_B17608.jpg

OEBPS/image/Figure_9.04_B17608.jpg

OEBPS/image/Figure_2.08_B17608.jpg
Cutting Plane:
Denchy.stl
Position
X 0.00
v 0.00
z 3400
Rotation
X 10
v 180
z 32
Reset

b tH
beg 1D
beg 1)

—+ Import Models (® start Slicing.

Model: 3DBenchy st

Bounding Box(mim): 60.0 x 31.0 x 48.0
Triangles: 225154

Edges: 19457

Nor+Marifold Edges: 0

Error Orientation Faces: 0

OEBPS/image/Figure_2.18_B17608.jpg
Build Plate

VAT with clear
bottom

L J

Light Projector

Build Plate is lowered and
sliced image is projected

Build Plate is raised
incrementally

Next sliced image is
projected

OEBPS/image/Figure_10.05_B17608.jpg

OEBPS/image/Figure_1.17_B17608.jpg

OEBPS/image/Figure_1.20_B17608.jpg

OEBPS/image/Figure_6.20_B17608.jpg

OEBPS/image/Figure_1.07_B17608.jpg

OEBPS/image/Figure_6.10_B17608.jpg

OEBPS/image/Figure_8.13_B17608.jpg

OEBPS/image/Figure_8.23_B17608.jpg

OEBPS/image/Figure_1.01_B17608.jpg

OEBPS/image/Figure_6.16_B17608.jpg

OEBPS/image/Figure_8.03_B17608.jpg
Custom size
Width: 22000000 = + Height: 22000000 = + Units:| rom v

b Resize page to content...

OEBPS/image/B17608_03_12.jpg
Solid part 20% Infill

OEBPS/image/Figure_8.33_B17608.jpg

OEBPS/image/B17608_03_08.jpg

OEBPS/image/Figure_1.10_B17608.jpg
Filament ————>

~——PTFE Tube
| <—— Coupler
gﬁqal: = Throat
Thermistor
Heat W Heat
leater or
Cartridge 75. =~ Block
~<—— Nozzle
PTFE Tube
to Nozzle

Filament —————>
~<—— PTFE Tube

~<—— Coupler

Heat

Sink Throat
Heat
Thermist Break
mistor
Ne e
Heater Heater
Cartridge ’ =~ Block

~<—— Nozzle

PTFE Tube
to Heat Break

OEBPS/image/Figure_6.07_B17608.jpg

OEBPS/image/Figure_7.07_B17608.jpg

OEBPS/image/Figure_7.27_B17608.jpg

OEBPS/toc.xhtml

 Contents

 		

 Simplifying 3D Printing with OpenSCAD

 		

 Contributors

 		

 About the author

 		

 About the reviewers

 		

 Preface

 		

 Who this book is for

 		

 What this book covers

 		

 To get the most out of this book

 		

 Download the example code files

 		

 Conventions used

 		

 Get in touch

 		

 Part 1: Exploring 3D Printing

 		

 Chapter 1: Getting Started with 3D Printing

 		

 Technical requirements

 		

 Understanding the Creality Ender 3

 		

 Ender 3 models

 		

 Understanding the parts of the Ender 3

 		

 Upgrading the Ender 3

 		

 Leveling the print bed

 		

 Leveling the corners of the bed

 		

 Mesh bed leveling

 		

 Materials available for 3D printing

 		

 Poly-Lactic Acid (PLA)

 		

 Acrylonitrile Butadiene Styrene (ABS)

 		

 Glycolyzed Polyester (PETG)

 		

 High-Impact Polystyrene (HIPS)

 		

 Polyvinyl Alcohol (PVA)

 		

 Carbon fiber

 		

 Nylon

 		

 Flexible materials

 		

 Other materials

 		

 Summary

 		

 Chapter 2: What Are Slicer Programs?

 		

 Technical requirements

 		

 Controlling a 3D printer using G-code

 		

 What is G-code?

 		

 Understanding G-code

 		

 Using Pronterface to control our 3D printer

 		

 Leveling the corners with G-code

 		

 Common FDM slicer programs

 		

 Slicing an object into G-code

 		

 Slicing software applications

 		

 Which FDM slicer should I choose?

 		

 Slicer programs for liquid resin 3D printers

 		

 What is liquid resin printing?

 		

 Chitubox

 		

 The Anycubic Photon Workshop

 		

 Summary

 		

 Chapter 3: Printing Our First Object

 		

 Technical requirements

 		

 Finding objects to print

 		

 Understanding 3D object file formats

 		

 Downloading 3D objects

 		

 Calibration objects for our 3D printer

 		

 Preparing our 3D printer

 		

 Slicing our object

 		

 Setting up the profile

 		

 Loading our model

 		

 Quality settings

 		

 Infill settings

 		

 Temperature settings

 		

 Cooling settings

 		

 Build Plate Adhesion settings

 		

 Slicing our object

 		

 Printing our object

 		

 Applying a glue stick to the bed

 		

 Running our print job

 		

 Calibrating our printer

 		

 Inspecting #3DBenchy for print quality

 		

 Summary

 		

 Part 2: Learning OpenSCAD

 		

 Chapter 4: Getting Started with OpenSCAD

 		

 Technical requirements

 		

 Introducing OpenSCAD

 		

 Exploring other CAD programs

 		

 Fusion 360

 		

 TinkerCAD

 		

 FreeCAD

 		

 Comparing OpenSCAD with other CAD programs

 		

 Learning OpenSCAD GUI and basic commands

 		

 Downloading and Installing OpenSCAD

 		

 Getting to know the OpenSCAD environment

 		

 OpenSCAD basic 2D shapes

 		

 OpenSCAD basic 3D shapes

 		

 Learning OpenSCAD Boolean and transformation operations

 		

 OpenSCAD Boolean operations

 		

 OpenSCAD transformation operations

 		

 Creating our PVC pipe hook

 		

 Summary

 		

 Chapter 5: Using Advanced Operations of OpenSCAD

 		

 Technical requirements

 		

 Turning 2D shapes into 3D objects

 		

 Importing SVG files into OpenSCAD

 		

 Creating a 3D Thumbs Up symbol

 		

 Extruding the base

 		

 Putting the base and Thumbs Up object together

 		

 3D printing our Thumbs Up award

 		

 Looking at advanced OpenSCAD commands

 		

 Exploring the available fonts

 		

 Exploring the text operation

 		

 Creating a dynamic backing plate

 		

 Simplifying our code with modules

 		

 Creating a module for our Thumbs Up object

 		

 Creating a module for the base

 		

 Creating a module for the plaque

 		

 Creating a design using modules

 		

 Summary

 		

 Chapter 6: Exploring Common OpenSCAD Libraries

 		

 Technical requirements

 		

 Exploring the OpenSCAD General libraries

 		

 BOSL

 		

 dotSCAD

 		

 NopSCADlib

 		

 BOLTS

 		

 Using the BOSL to design a desk drawer

 		

 Downloading and installing the BOSL

 		

 Creating the drawer tray

 		

 Adding rails to our drawer tray

 		

 Creating the handle for our drawer

 		

 Creating the sliders for our desk drawer

 		

 Adding screw holes to the sliders

 		

 Exploring OpenSCAD Single Topic libraries

 		

 Round Anything

 		

 Mark's Enclosure Helper

 		

 The OpenSCAD threads.scad module

 		

 The OpenSCAD smooth primitives library

 		

 Creating our own OpenSCAD library

 		

 Summary

 		

 Part 3: Projects

 		

 Chapter 7: Creating a 3D-Printed Name Badge

 		

 Technical requirements

 		

 Creating text for our 3D-printed name badge

 		

 Understanding the OpenSCAD text operation

 		

 Making text curve in OpenSCAD

 		

 Creating a name tag text generator module

 		

 Adding a base plate to our 3D-printed name badge

 		

 Creating our first shape

 		

 Adding an indent for the brooch pin

 		

 Putting the first shape and indent together

 		

 Printing out our 3D-printed name badge

 		

 Preparing our design for a print job

 		

 Printing and finishing

 		

 Summary

 		

 Chapter 8: Designing and Printing a Laptop Stand

 		

 Technical requirements

 		

 Designing the frame in Inkscape and OpenSCAD

 		

 Downloading and installing Inkscape

 		

 Exploring Inkscape

 		

 Using Inkscape to design the frame

 		

 Using OpenSCAD to complete the design

 		

 Designing the threaded rod in OpenSCAD

 		

 Creating a rod with an M10 threaded top

 		

 Adding a connector plate

 		

 Printing out our laptop stand

 		

 Slicing and printing the frame

 		

 Slicing and printing the rods

 		

 Putting the laptop stand together

 		

 Summary

 		

 Chapter 9: Designing and Printing a Model Rocket

 		

 Technical requirements

 		

 Creating the motor mount

 		

 Building around the paper tube

 		

 Designing and printing the motor mount

 		

 Getting an accurate outside diameter measurement

 		

 Creating the nose cone

 		

 Designing the nose cone

 		

 Printing out the nose cone

 		

 Creating the fins

 		

 Designing the fin can

 		

 Printing out the fin can

 		

 Assembling and launching the model rocket

 		

 Installing the shock cord

 		

 Installing the fin can

 		

 Finishing the construction of our model rocket

 		

 Summary

 		

 Part 4: The Future

 		

 Chapter 10: The Future of 3D Printing and Design

 		

 Technical requirements

 		

 3D printed homes

 		

 What are 3D printed homes?

 		

 Advantages of 3D printed homes

 		

 3D printed homes for space exploration

 		

 Creating a 3D printed birdhouse

 		

 The future of mass customization

 		

 The fourth industrial revolution and 3D printing

 		

 Customizing products

 		

 Summary

 		

 Hi!

 		

 Why subscribe?

 		

 Other Books You May Enjoy

 		

 Packt is searching for authors like you

 Landmarks

 		

 Cover

 		

 Table of Contents

OEBPS/image/Figure_2.01_B17608.jpg
0ono

G-Code
Commands
000000
0000000000000
0000000000000
00C____ 000

Sensory Data

OEBPS/image/Figure_5.10_B17608.jpg
@ 0penSCAD Font List - OpenSCAD

This it shows the fonts currently registered with OpenSCAD.
Example:

cext ("OpenSCAD", font = "DejaVa Sans");

et ("OpenSCAD", fant = "Liberation Sans:style=Italic);

Font name. Font style
363 Corbel Regular

381 Corbel Bold

C:/WINDOWS/fonts/corbel

C/WINDOWS/fonts/corbelb tf

C/WINDOWS/fonts/corbelz.ttf

[—
ol e [——

553 Couterw oad R

21 cutent Regulr CMNDOUSfomtCURLZ__TTE

& ouba gt CMNDOUS ot DUBAIGHTTTE

o5 Ouba Medum CMINDOWS fots DUBALMEDIMATE

25 i Regulr CMNDOUS oty DUBALREGULARTTE

L3 % i

e

|copy toclipboard| [k

OEBPS/image/Figure_5.20_B17608.jpg
Editor.
Gl aonz=E QL

1 module create_3D_from_svg (path)
2@{

11
12 module create base (shape=1)
13m{

24 module create plaque (display_text, scale factor=1)
25@{

33 |

OEBPS/image/B17608_03_01.jpg

OEBPS/image/Figure_9.05_B17608.jpg
— e

d_actual

ckness —

motor_diameter

—

—

thrust_ring

I

ybBlay 1ojow

OEBPS/image/Figure_2.11_B17608.jpg
Import to ideaMaker X

ideamakerlibrary://profile/download/?file=eyJmaWxITmFtZSI6ll

*1.0pen ideaMaker (Not yet installed an ideaMaker? Please click Download)
2.Copy the link
3 Return to ideaMaker

@ View detailed tutorial

OEBPS/image/Figure_2.21_B17608.jpg
= Photon Workshop V2.1.21.RC6
File Edit Configure View Help

DB AP ABOANS

(=)

¥ slice Settings

Resin Type
Resin Price: 5 [J
Resin Volume{ml)
e ———
Normal Exposure Time(s):
oFTimet
Bottom Exposure Timef(s):
Bottom layers:
Z Lift Distance(mm):
ZLit Speed(mms).
2 Retract Speed(mmis)

Antialias

P Machine Settings

Rosohtiongirctsy (NIAAAOEEED)
XY-Pixel size(um): 47.250

OEBPS/image/Figure_1.11_B17608.jpg

OEBPS/image/Figure_1.16_B17608.jpg

OEBPS/image/Figure_1.21_B17608.jpg

OEBPS/image/Figure_9.23_B17608.jpg

OEBPS/image/Figure_1.06_B17608.jpg
%’

Q 23/ o<

() 100%

-.—
ar
Prepare

®

Info

$ 22/ 0%

z 0.00

OEBPS/image/Figure_9.33_B17608.jpg

OEBPS/image/Figure_7.17_B17608.jpg

OEBPS/image/Figure_7.09_B17608.jpg

OEBPS/image/B17608_03_16.jpg
o &P B

OEBPS/image/Figure_6.17_B17608.png

OEBPS/image/Figure_2.02_B17608.jpg
G28
G0 Z10
GO X120 Y120 Z20

OEBPS/image/Figure_8.18_B17608.jpg

OEBPS/image/QR_code_B17608.png

OEBPS/image/Figure_8.28_B17608.jpg
Top/Bottom
Top Surface Skin Layers
Top/Bottom Thickness o £
Top Thickness
Top Layers
Bottom Thickness
Bottom Layers
Initial Bottom Layers
Top/Bottom Pattern
Bottom Pattern Initial Layer
Monotonic Top/Bottom Order
Top/Bottom Line Directions
No Skin in Z Gaps

Extra Skin Wall Count

12

12

Lines

Lines

n

(Enable Ironing

)

mm

mm

o Build Plate Adhesion

(mmmum.an Type @ 5 [8rim v)
Skirt/Brim Minimum Length 2500 mm
Brim Width @ |80 mm

Brim Line Count @ o
Brim Distance @ oo mm
Brim Only on Outside @ v

OEBPS/image/Figure_7.18_B17608.jpg
Generic PLA

el
-

Nozzle Size.

0.4mm Nozzle

OEBPS/image/Figure_2.13_B17608.jpg
(@ Marketplace

Plugins Materials Installed =

Community Plugins
30 Prnt Log Uploader 30Printer0s integration

Send print info to 3D Print Log.
Easily save print settings/durati..

‘Application for a quick 3D print of
your models by 3Dprinter0S. Th..

Arc Welder Auto-Orientation

Extension that enables the
automatic orientation of madels..

Converts multiple subsequent GO/
G1 moves to G2/G3 arcs. Ths re..

Automatic Slicing Toggle Barbarian Units

toggle automatic siicing. quickly convert models fromin..
Blender integration CATIAintegration

“This plugin provides support to
Cura to open CATpart files. Neve..

Allows opening Blender fles
directly in Utimaker Cura.

I - Qe

I R & QR H

S ———— PR ———

OEBPS/image/Figure_9.25_B17608.jpg

OEBPS/image/Figure_2.03_B17608.jpg

OEBPS/image/Figure_9.15_B17608.jpg
SR -

OEBPS/image/Figure_7.19_B17608.jpg
printing Temperature RAED “
Printing Temperaturc Inial Layer 1200 B3
Inital Prining Temperature 1900

FaatPrining Temperature 1500 B
Build Plate Temperature. & 60 °c

Build Plate Temperature Initial Layer ¢ °c

OEBPS/image/Figure_2.12_B17608.jpg

OEBPS/image/Figure_6.15_B17608.jpg
;,,, -~
A

OEBPS/image/Figure_1.15_B17608.jpg

OEBPS/image/Figure_6.02_B17608.jpg

OEBPS/image/Figure_6.22_B17608.jpg

OEBPS/image/B17608_03_05.jpg
@9 in-po./mm

OEBPS/image/Figure_7.20_B17608.jpg

OEBPS/image/Figure_6.08_B17608.jpg

OEBPS/image/B17608_03_15.jpg

OEBPS/image/Figure_7.26_B17608.jpg

OEBPS/image/Figure_5.17_B17608.jpg
So s W e

module create_3D_from_ svg(path)
{

rotate([90,0,01)
linear_extrude (10)
import (path, center=true);

OEBPS/image/Figure_8.11_B17608.jpg
)

OEBPS/image/Figure_2.10_B17608.jpg

OEBPS/image/Figure_7.13_B17608.jpg

OEBPS/image/Figure_1.12_B17608.jpg

OEBPS/image/Figure_8.31_B17608.jpg

OEBPS/image/Figure_8.04_B17608.jpg

OEBPS/image/B17608_03_11.jpg
= Quality
Layer Heignt
ntilLayer Height
Line Wictn
WallLine Width
Outer WalLine Wit
Inner Wals Line Wiatn
Top/Bottom Line Width
InfilLine Width
SkirtBrim Line Widtn
Support Line Widt
Support Interface Line Widtn
Support Roof Line Width
Support Fioor Line Width
Intial Layer Line Width

%

J %
g
ER

% % % %

OEBPS/image/Figure_4.13_B17608.jpg

OEBPS/image/Figure_9.22_B17608.jpg
B i
Init Density
InfilLine Distance:
Infil Pattern
ConnectIni Lines
Connect Infl Polygons
InfillLine Directions
InfinXoffset
InfilY Offset

Randomize Infil Start

Infil Line Muttplier

100

120

Triangles

g

g

OEBPS/image/Figure_9.09_B17608.jpg

OEBPS/image/Figure_9.13_B17608.jpg
B mfin
Infill Density

Infill Line Distance
Infill Pattern
Connect Infill Lines
Connect Infill Polygons
Infill Line Directions
Infill X Offset
Infill Y Offset

Randomize Infill Start
Infill Line Muttiplier

X Cooling
Enable Print Cooling

o Build Plate Adhesion

Raft Extra Margin

Raft Smoothing

Raft Air Gap

[\ Experimental
Slicing Tolerance
Infill Travel Optimization
Minimum Polygon Circumference
Enable Draft Shield

10.0 %
120 mm
Triangles i
[

0.0 mm
0.0 mm

@ 9

Middle

OEBPS/image/Figure_7.06_B17608.jpg

OEBPS/image/Figure_4.19_B17608.jpg

OEBPS/image/Figure_8.24_B17608.jpg
i Top/Bottom v B mfin i

Top Surface Skin Layers 0 Infill Density 200 %
Top/Bottom Thickness O L2 mm Infill Line Distance 60 mm
Top Thickness 12 ki Infill Pattern Cubic hd
Top Layers 6 Connect Infill Lines
Bottom Thickness 12 mn Connect Infill Polygons

Bottom Layers. 6 Infill Line Directions 8]

Initial Bottom Layers 6 fill X Offset 00 mm
Top/Bottom Pattern Lines v Infill Y Offset 00 mm
Bottom Pattern Initial Layer Lines k4 Randomize Infill Start
Monotonic Top/Bottom Order ([,.,;,, Line Multiplier 9 |2
Top/Bottom Line Directions n Extra Infill Wall Count o

No Skin in Z Gaps

Infill Overlap Percentage

Extra Skin Wall Count Infill Overlap 012 mm

(5'“"-*""""'9 Infill Wipe Distance 00 mm

OEBPS/image/Figure_4.02_B17608.jpg

OEBPS/image/B17608_03_09.jpg
Add a printer

‘Add a networked printer

‘There is no printer found over your network.

Refresh Add printerby? Add cloud printer

& Troublesnooting

‘Add anon-networked printer

Add

OEBPS/image/Figure_1.08_B17608.jpg

OEBPS/image/Figure_4.22_B17608.jpg

OEBPS/image/Figure_5.11_B17608.jpg

OEBPS/image/Figure_9.02_B17608.jpg

OEBPS/image/Figure_9.29_B17608.jpg

OEBPS/image/Figure_10.07_B17608.jpg

OEBPS/image/Figure_4.08_B17608.jpg
Editor

7

P
J

ry %

=

Object

Display-

L,

YyPHRRQAD 0P REed g& ~

ro ety

Consob

Ao

OEBPS/image/Figure_8.22_B17608.jpg
Generic PLA|
0.4mm Nozle

Custom

Material pLA

Nozle Size. 0.4mm Nozzle

OEBPS/image/Figure_5.13_B17608.jpg
psng dsn atin)...
o e seiaon..

OEBPS/image/Figure_7.04_B17608.jpg
e
Compiling design (CSG Products generation)...

OEBPS/image/Figure_1.19_B17608.jpg

OEBPS/image/Figure_7.24_B17608.jpg
© 2hours 48 minutes ®
@ 1253560

Preview

OEBPS/image/Figure_2.17_B17608.jpg

OEBPS/image/Figure_5.06_B17608.jpg

OEBPS/image/Figure_6.06_B17608.jpg

OEBPS/image/B17608_03_10.jpg
Creality Ender-3v2 < GenericPLA
0.4mm Nozzle

OEBPS/image/Figure_6.24_B17608.jpg

OEBPS/image/Figure_4.15_B17608.jpg

OEBPS/image/Figure_9.20_B17608.jpg

OEBPS/image/Figure_10.01_B17608.jpg

OEBPS/image/Figure_8.02_B17608.jpg

OEBPS/image/Figure_6.11_B17608.jpg

OEBPS/image/B17608_03_19.jpg

OEBPS/image/Figure_2.19_B17608.jpg
= m

QQ@ =
P
v

Move P

otate

a i

Scale i

- i _
%
b

OEBPS/image/Figure_7.02_B17608.jpg

OEBPS/image/Figure_4.06_B17608.jpg
FTs)
el TinkerCAD Example

A &*’A"
- @9 i

Bpot | SendTo

H L @

Wokplane Ruler

Wedge

Halt sphere Solygon

e
0

OEBPS/image/Figure_5.15_B17608.jpg

OEBPS/image/Figure_6.04_B17608.jpg

OEBPS/image/Figure_8.20_B17608.jpg

OEBPS/image/Learn_SOLIDWORKS_2022_-_Second_Edition.png
Pl N .

SOLIDWORKS 2022

Get up to speed with key concepts and tools to become an
accomplished SOLIDWORKS Associate and Professional

Tayseer Almattar

OEBPS/image/Figure_7.22_B17608.jpg
(3 Post Processing Plugin

Post Processing Scripts Pause at height

Pauseat

Pause Height

Method
Disarm timeout
ParicPrint Head X
ParicPrint Head Y
Retraction

Retraction Speed
Extrude Amount
Extrude Speed

Redo Layer

Standby Temperature
Display Text

G-code Before Pause

G-code After Pause

Height

<

Mariin (M0)

¥
i

g
QE

il

OEBPS/image/B17608_Preface_Table.png
Software/hardware covered in the book

Operating system requirements

OpenSCAD Windows, macOS, or Linux
Cura Windows, macOS, or Linux
ideaMaker Windows, macOS, or Linux

Late-model 3D printer. The Creality Ender 3 V2
will be used for demonstrations.

3mm drill tap used to connect plates together in
Chapter 8, a model rocket base plate in Chapter 9,
and the bottom tray of a birdhouse in Chapter 10.

MI10 nuts for securing the rods of the laptop riser
stand to the side frames in Chapter 8.

OEBPS/image/Figure_4.17_B17608.jpg

OEBPS/image/Figure_5.04_B17608.jpg

OEBPS/image/Figure_7.11_B17608.jpg

OEBPS/image/Figure_10.03_B17608.jpg

OEBPS/image/B17608_03_04.jpg
Z axis (20.19mm)

X axis (20.13mm) Y axis (20.12mm)

OEBPS/image/Figure_6.13_B17608.jpg

